Math, asked by rauldonton1159, 11 months ago

Find the value is of a and b, if x²-4 is a factor of ax⁴+2x³ -3x²+bx-4.

Answers

Answered by MaheswariS
19

\textbf{Concept used:}

\textbf{Factor theorem:}

\text{(x-a) is a factor of f(x) iff f(a) =0}

\text{Let f(x)=}ax^4+2x^3-3x^2+bx-4

\textbf{Given:}\;x^2-4\;\text{is a factor of f(x)}

x^2-4=x^2-2^2=(x-2)(x+2)

\text{Since (x-2) is a factor of f(x), f(2)=0}

a(2)^4+2(2)^3-3(2)^2+b(2)-4=0

16a+16-12+2b-4=0

16a+2b=0

8a+b=0..........(1)

\text{Since (x+2) is a factor of f(x), f(-2)=0}

a(-2)^4+2(-2)^3-3(-2)^2+b(-2)-4=0

16a-16-12-2b-4=0

16a-2b=32

8a-b=16..........(2)

\text{Adding (1) and (2), we get}

16a=16

\implies\boxed{\bf\;a=1}

\text{Put a=1 in (1), we get}

8+b=0

\implies\boxed{\bf\,b=-8}

Answered by lucky238158
5

Answer:

a is 1

and

b is -8

I hope it helps you

Attachments:
Similar questions