Math, asked by pr117872, 10 months ago

find the value of [1-{1-(1-p^2)^-1}^-1]-1/2​

Answers

Answered by luisecubero77
0

Answer:

p

Step-by-step explanation:

[1-{1-(1 - p²)^-1}^-1]-1/2​

1 / [1-{1-(1 - p²)^-1}^-1] ^ 1/2

1 / [1-{1 - (1 / (1 - p²))}^-1] ^ 1/2

1 / [1-{1 - 1 / (1 - p²)}^-1] ^ 1/2

1 / [1-{(1 - p² - 1) / (1 - p²)}^-1] ^ 1/2

1 / [1 - {- p² / (1 - p²)}^-1] ^ 1/2

1 / [1 - (1 / {- p² / (1 - p²)})] ^ 1/2

1 / [1 - ((1 - p²) / - p² )] ^ 1/2

1 / [1 + (1 - p²) /  p² )] ^ 1/2

1 / [(p² + 1 - p²) /  p² )] ^ 1/2

1 / ( 1 / p² ) ^ 1/2

1 / 1 / p

p

Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf{ \mathcal Prove \:  that \:  \:  \bigg[ 1-\bigg \{1-(1-p²)^{-1}\bigg\} ^{-1} \bigg]^{-\dfrac{1}{2} } = p}

Solution

{ \mathcal{\:  \:  \mapsto \:  \: \bigg[ 1-\bigg \{1-(1-p²)^{-1}\bigg\} ^{-1} \bigg]^{-\dfrac{1}{2} } = p}}

{ \sf\:  \:  \mapsto \:  \: \bigg[ 1-\bigg \{1-( {1}^{2} -p²)^{-1}\bigg\} ^{-1} \bigg]^{-\dfrac{1}{2} } = p}

{\sf  \:  \:  \mapsto \:  \: \bigg[ 1-\bigg \{1- \{(1 + p)(1 - p) \}^{-1}\bigg\} ^{-1} \bigg]^{-\dfrac{1}{2} } = p}

{  \sf\:  \:  \mapsto \:  \: \bigg[ 1-\bigg \{1-  \dfrac{1}{(1 + p)(1 - p)} \bigg\} ^{-1} \bigg]^{-\dfrac{1}{2} } = p}

{  \sf\:  \:  \mapsto \:  \: \bigg[1 -  \bigg \{  \dfrac{(1 + p)(1 - p) - 1}{(1 + p)(1 - p)} \bigg\} ^{-1} \bigg]^{-\dfrac{1}{2} } = p}

{  \sf\:  \:  \mapsto \:  \: \bigg[1 -  \bigg \{  \dfrac{ {1}^{2} -  {p}^{2}  - 1}{(1 + p)(1 - p)} \bigg\} ^{-1} \bigg]^{-\dfrac{1}{2} } = p}

{  \sf\:  \:  \mapsto \:  \: \bigg[1 -  \bigg \{  \dfrac{    - p \times  - p  - 1 + 1}{(1 + p)(1 - p)} \bigg\} ^{-1} \bigg]^{-\dfrac{1}{2} } = p}

{  \sf\:  \:  \mapsto \:  \: \bigg[1 -  \bigg \{  \dfrac{       {p}^{2}   }{(1 + p)(1 - p)} \bigg\} ^{-1} \bigg]^{-\dfrac{1}{2} } = p}

{  \sf\:  \:  \mapsto \:  \: \bigg[1 -    \dfrac{     (1 + p)(1 - p)     }{ {p}^{2} }   \bigg]^{-\dfrac{1}{2} } = p}

{  \sf\:  \:  \mapsto \:  \: \bigg[1  +    \dfrac{     (1  -  p)(1  +  p)     }{ {p}^{2} }   \bigg]^{-\dfrac{1}{2} } = p}

{  \sf\:  \:  \mapsto \:  \: \bigg[ \dfrac{        {p}^{2}    +  {1}^{2} - {p}^{2}    }{ {p}^{2} }   \bigg]^{-\dfrac{1}{2} } = p}

{  \sf\:  \:  \mapsto \:  \: \bigg[ \dfrac{        1  }{ {p}^{2} }   \bigg]^{-\dfrac{1}{2} } = p}

{  \sf\:  \:  \mapsto \:  \:  {p}  ^{2 \times  \frac{1}{2} } = p}

{  \sf\:  \:  \mapsto \:  \: p = p}

{\bf  \mathcal{ \:  \:  \mapsto \:  \: LHS = RHS }_{ \pink{_{_{_{_{ Proved }}}}}}}

Similar questions