Math, asked by v1inikaanilpra, 1 year ago

Find the value of √1+sinA/1-sinA

Answers

Answered by hafizur0210
61

Answer:

L.H.S.=√1+sinA/1-sinA

=√(1+sinA)(1+sinA)/(1-sinA)(1+sinA)

=√(1+sinA)^/1-sin^A

=√(1+sinA)^/cos^A

=1+sinA/cosA

= 1/cosA+ sinA/cosA

=secA+tanA

=R.H.S. prove


Answered by pulakmath007
2

\displaystyle \sf{ \sqrt{ \frac{1 + sin A}{1 - sin A} } } = sec A + tan A

Given :

\displaystyle \sf{ \sqrt{ \frac{1 + sin A}{1 - sin A} } }

To find :

The value of the expression

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

\displaystyle \sf{ \sqrt{ \frac{1 + sin A}{1 - sin A} } }

Step 2 of 2 :

Simplify the given expression

\displaystyle \sf{ \sqrt{ \frac{1 + sin A}{1 - sin A} } }

\displaystyle \sf{ =  \sqrt{ \frac{(1 + sin A)(1 + sin A)}{(1 + sin A)(1 - sin A)} } }

\displaystyle \sf{ =  \sqrt{ \frac{{(1 + sin A)}^{2} }{1 - {sin}^{2}  A}}}

\displaystyle \sf{ =  \sqrt{ \frac{{(1 + sin A)}^{2} }{{cos}^{2}  A}}}

\displaystyle \sf{ =  \frac{{(1 + sin A)}^{} }{{cos}^{}  A}}

\displaystyle \sf{ = \frac{{1}^{} }{{cos}^{}  A} +   \frac{{ sin A}^{} }{{cos}^{}  A}}

\displaystyle \sf{ = sec  A+   tan A}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if x cos a=8 and 15cosec a=8sec a then the value of x is

a) 20 b)16 c)17 d)13

https://brainly.in/question/46325503

2. 7 cos 30° + 5 tan 30° + 6 cot 60° is

https://brainly.in/question/46167849

3. 1+ sin2α = 3 sinα cosα, then values of cot α are

https://brainly.in/question/46265791

Similar questions