If x=2cos^2 ,y=2sin^2+1.find x+y
Answers
Answered by
24
X+Y = 2 COS²2 + 2 SIN²2 + 1
= 2 ( COS²2+SIN²2) + 1
= 2×1 + 1
= 3
= 2 ( COS²2+SIN²2) + 1
= 2×1 + 1
= 3
Answered by
3
Answer:
The value of x+y is 3.
Step-by-step explanation:
Given that,
x = 2cos²x
y = 2sin²x + 1
We need to find the value of x+y.
→ x + y = 2cos²x + 2sin²x + 1
→ x + y = 2(cos²x + sin²x) + 1
→ x + y = 2(1) + 1
→ x + y = 2 + 1
→ x + y = 3
Hence, the value of x+y is 3.
Extra knowledge:
1. Relationship between sides and T-Ratios.
- sin(θ) = Height/Hypotenuse
- cos(θ) = Base/Hypotenuse
- tan(θ) = Height/Base
- cot(θ) = Base/Height
- sec(θ) = Hypotenuse/Base
- cosec(θ) = Hypotenuse/Height
2. Square formulae.
- sin²(θ) + cos²(θ) = 1
- 1 + tan²(θ) = sec²(θ)
- 1 + cot²(θ) = cosec²(θ)
3. Reciprocal Relationship.
- sin(θ) = 1/cosec(θ)
- cos(θ) = 1/sec(θ)
- tan(θ) = 1/cot(θ)
- cot(θ) = 1/tan(θ)
- sin(θ)/cos(θ) = 1/cot(θ)
- cos(θ)/sin(θ) = 1/tan(θ)
4. Trigonometric functions of multiple of angles.
- sin2(θ) = 2sin(θ)cos(θ)
- cos2(θ) = cos²(θ) - sin²(θ)
- cos2(θ) = 2cos²(θ) - 1
- cos2(θ) = 1 - sin²(θ)
- tan(θ) = 2tan(θ)/1 - tan²(θ)
5. Sign of Trigonometric ratios in Quadrants.
- sin (90° - θ) = cos(θ)
- cos (90° - θ) = sin(θ)
- tan (90° - θ) = cot(θ)
- csc (90° - θ) = sec(θ)
- sec (90° - θ) = csc(θ)
- cot (90° - θ) = tan(θ)
- sin (90° + θ) = cos(θ)
- cos (90° + θ) = -sin(θ)
- tan (90° + θ) = -cot(θ)
- csc (90° + θ) = sec(θ)
- sec (90° + θ) = -csc(θ)
- cot (90° + θ) = -tan(θ)
- sin (180° - θ) = sin(θ)
- cos (180° - θ) = -cos(θ)
- tan (180° - θ) = -tan(θ)
- csc (180° - θ) = csc(θ)
- sec (180° - θ) = -sec(θ)
- cot (180° - θ) = -cot(θ)
- sin (180° + θ) = -sin(θ)
- cos (180° + θ) = -cos(θ)
- tan (180° + θ) = tan(θ)
- csc (180° + θ) = -csc(θ)
- sec (180° + θ) = -sec(θ)
- cot (180° + θ) = cot(θ)
- sin (270° - θ) = -cos(θ)
- cos (270° - θ) = -sin(θ)
- tan (270° - θ) = cot(θ)
- csc (270° - θ) = -sec(θ)
- sec (270° - θ) = -csc(θ)
- cot (270° - θ) = tan(θ)
- sin (270° + θ) = -cos(θ)
- cos (270° + θ) = sin(θ)
- tan (270° + θ) = -cot(θ)
- csc (270° + θ) = -sec(θ)
- sec (270° + θ) = cos(θ)
- cot (270° + θ) = -tan(θ)
Similar questions