Math, asked by santhosraj14gmailcom, 1 year ago

find the value of( 11/cot^2 theta - 11/ cos^2) theta​

Answers

Answered by MaheswariS
106

\frac{11}{cot^2\theta}-\frac{11}{cos^2\theta}

=11(\frac{1}{cot^2\theta})-11(\frac{1}{cos^2\theta})

=11tan^2\theta-11sec^2\theta

=11(tan^2\theta-sec^2\theta)

=-11(sec^2\theta-tan^2\theta)

\text{using}

\boxed{\bf\,sec^2\theta-tan^2\theta=1}

\text{we get}

=11(1)

=-11

\implies\boxed{\bf\,11(\frac{11}{cot^2\theta})-(\frac{11}{cos^2\theta})=-11}

Answered by handgunmaine
14

The value of (\dfrac{11}{\cot^2\theta}-\dfrac{11}{\cos^2\theta}) is (-11).

Step-by-step explanation:

We need to find the value of (\dfrac{11}{\cot^2\theta}-\dfrac{11}{\cos^2\theta})

So,

=(\dfrac{11}{\cot^2\theta}-\dfrac{11}{\cos^2\theta})      \\ \\=11(\dfrac{1}{\cot^2\theta}-\dfrac{1}{\cos^2\theta}})

Since,

\dfrac{1}{\cot^2\theta}=\tan^2\theta\\\\\dfrac{1}{\cos^2\theta}=\sec^2\theta

So,

=11(\tan^2\theta-\sec^2\theta)

Since we know that, \sec^2\theta-\tan^2\theta=1

So,

(\dfrac{11}{\cot^2\theta}-\dfrac{11}{\cos^2\theta})=11(\tan^2\theta-\sec^2\theta)\\\\(\dfrac{11}{\cot^2\theta}-\dfrac{11}{\cos^2\theta})=11(-1)\\\\(\dfrac{11}{\cot^2\theta}-\dfrac{11}{\cos^2\theta})=-11

So, the value of (\dfrac{11}{\cot^2\theta}-\dfrac{11}{\cos^2\theta}) is (-11).

Learn more,

Trigonometry

Similar questions