Math, asked by yathinabhisista, 1 year ago

if alpha and beta are roots of quadratic equation X square - 8 x + 15 equal to zero find the value of 1/alpha + 1/ beta -2 alpha beta

Answers

Answered by susheellattala
1

you may know that for an quadratic eq ax^{2}+bx+x=0

α+β=\frac{-b}{a}=8

αβ=\frac{c}{a}=15

\frac{1}{\alpha }+\frac{1 }{\beta }-2\alpha \beta

taking Lcm we get

\frac{\beta+\alpha -2\alpha ^{2} \beta ^{2} }{\alpha\beta  }

inserting values

\frac{8-2(15^{2} )}{15}

solve and get the answer


Answered by waqarsd
0

for \: the \: quadratic \: eqn \\ a {x}^{2}  + bx + c = 0 \\ sum \: of \: roots =  \frac{ - b}{a}  =  \alpha  +  \beta  \\ product \: of \: roots =  \frac{c}{a}  =  \alpha  \beta  \\ now \: given \\  {x}^{2}  - 8x + 15 = 0 \\  \alpha  +  \beta  = 8 \\  \alpha  \beta  = 15 \\ now \\  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  - 2 \alpha  \beta  \\  =  \frac{ \alpha  +  \beta }{ \alpha  \beta }  - 2 \alpha  \beta  \\  =  \frac{ - 442}{15}
hope it helps
Similar questions