Math, asked by rfarhankhan, 4 months ago

find the value of 13³- 12³​

Answers

Answered by Anonymous
2

Answer:

469 is your answer

Step-by-step explanation:

13 = 13*13*13 = 2197

12 = 12*12*12 = 1728

so,

2197 - 1728

= 469

HOPE IT HELPS!! PLZ MARK ME AS BRAINLIEST


rfarhankhan: thanks man
Anonymous: No prob buddy
rfarhankhan: thanks for follwoing me man o boi
Anonymous: No problem m8
Anonymous: plz can you mark me as brainliest?
Anonymous: and u haven't accepted my invite lamoo
Anonymous: lmaoo*
Answered by MrImpeccable
18

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

To Solve:

  • 13³- 12³

Solution:

 \implies 13^3 - 12^3 \\ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \\ \implies 13^3 - 12^3 = (13-12)(13^2 + 13*12 + 12^2) \\ \implies 13^3 - 12^3 = 169 + 156 + 144 \\ \bold {\implies 13^3 - 12^3 = 469} \\

Formula Used:

  • a^3 - b^3 = (a - b)(a^2 + ab + b^2)

Learn More:

 \boxed{\begin{minipage}{7 cm}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identity}}\:\bigstar}\\ \\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\ \\2)\sf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\ \\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\ \\4)\sf\: (A+B)^{2} = (A-B)^{2} + 4AB\\ \\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\ \\6)\sf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\ \\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\ \\8)\sf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2}) \\ \\9)\sf\: A^{3} - B^{3} = (A-B)(A^{2} + AB + B^{2})\\ \\ \end{minipage}}

Similar questions
Math, 10 months ago