Find the value of 27 x+8yº, if
(a) 3x +2y =14 and xy = 8
14
Answers
Answered by
2
Step-by-step explanation:
Using identity:-
(3x + 2y)^{3} = 27x^{3} + 8y^{3} + (3*3x*2y)(3x +2y)(3x+2y)
3
=27x
3
+8y
3
+(3∗3x∗2y)(3x+2y)
14^{3} = 27x^{3} + 8y^{3} + (18*14*8)14
3
=27x
3
+8y
3
+(18∗14∗8)
2744 = 27x^{3} + 8y^{3} + 20162744=27x
3
+8y
3
+2016
728 = 27x^{3} + 8y^{3}728=27x
3
+8y
3
Answered by
1
In the given problem,we have to find the value of
27x^2 + 8y^3
Given 3x + 2y = 14 , xy = 8
On cubing both sides we get
(3x+ 2y)^3 = 14^3
We shall use identity
(a+b) = a^3 + b^3 + 3ab(a+b)
27x^3+8y^3+18(xy)(3x+2y)=
27x^3+8y^3+18(4)(14) = 2744
27x^3+8y^3+2016 = 2744
27x^3+8y^3 = 2744-2016
27x^3+8y^3 = 728
Hence the value of 27x^3+8y^3 is 728
Hope this helps you....
Similar questions