Fiñd the value of 27a^3 + 108a^2b + 144ab^2 + 64b^3 if a = 4 b = 5
Answers
Answered by
0
Answer:
27(4^3) + 108(4^2*5) + 144 (4*5^2) + 64(5^3)
=27(256) + 108(16*5=80) + 144( 4* 25 = 100) + 64( 125) (PEMDAS)
=6912 + 8640 + 14400 + 8000
=37,952
hope this helps you :))))))
Step-by-step explanation:
Answered by
1
Answer :
- 19808
Given :
- 27a^3 + 108a^2b + 144ab^2 + 64b^3
- a = 4
- b = 5
To find :
- the value of 27a^3 + 108a^2b + 144ab^2 + 64b^3
Solution :
⇒ Let's find the value of the expression.
= 27a³ + 108a²b + 144ab² + 64b³
= 27 × 4³ + 108 × 4²5 + 144 (4 × 5)² + 64 × 5³
= 27 × 64 + 108 × 8 × 5 + 144 × (4 × 10) + 64 × 125
= 27 × 64 + 108 × 8 × 5 + 144 × (40) + 64 × 125
= 1728 + 864 × 5 + 144 × (40) + 64 × 125
= 1728 + 4320 + 144 × (40) + 64 × 125
= 1728 + 4320 + 144 × (40) + 8000
= 1728 + 4320 + 5760 + 8000
= 6048 + 13760
= 19808
- Therefore, value of 27a^3 + 108a^2b + 144ab^2 + 64b^3 is 19808.
Similar questions