Math, asked by Fiyanshu, 1 month ago

Fiñd the value of 27a^3 + 108a^2b + 144ab^2 + 64b^3 if a = 4 b = 5​

Answers

Answered by evelin012
0

Answer:

27(4^3) + 108(4^2*5) + 144 (4*5^2)  + 64(5^3)

=27(256) + 108(16*5=80) + 144( 4* 25 = 100) + 64( 125) (PEMDAS)

=6912 + 8640 + 14400 + 8000

=37,952

hope this helps you :))))))

Step-by-step explanation:

Answered by Eutuxia
1

Answer :

  • 19808

Given :

  • 27a^3 + 108a^2b + 144ab^2 + 64b^3
  • a = 4
  • b = 5​

To find :

  • the value of 27a^3 + 108a^2b + 144ab^2 + 64b^3

Solution :

⇒ Let's find the value of the expression.

= 27a³ + 108a²b + 144ab² + 64b³

= 27 × 4³ + 108 × 4²5 + 144 (4 × 5)² + 64 × 5³  

= 27 × 64 + 108 × 8 × 5 + 144 × (4 × 10) + 64 × 125

= 27 × 64 + 108 × 8 × 5 + 144 × (40) + 64 × 125

= 1728 + 864 × 5 + 144 × (40) + 64 × 125

= 1728 + 4320 + 144 × (40) + 64 × 125

= 1728 + 4320 + 144 × (40) + 8000

= 1728 + 4320 + 5760 + 8000

= 6048 + 13760

= 19808

  • Therefore, value of 27a^3 + 108a^2b + 144ab^2 + 64b^3  is 19808.

Similar questions