find the value of 27xcube+8ycube, if. 3x+2y=14 and xy=8
Answers
Answered by
2
|-|∆¶£
!T
|-|£L¶
¥∆Π...
!T
|-|£L¶
¥∆Π...
Attachments:
ashish296:
thanku.....
Answered by
1
Heya!!
3x + 2y = 14 ( Given)
xy = 8 ( Given)
__________________
( 3x+2y)^2 = (14)^2
=) (3x)^2 + (2y)^2 + 2 (3x)(2y) = 196
=) 9x^2 + 4y^2 + 12xy = 196
=) 9x^2 + 4y^2 + 12 (8) = 196
=) 9x^2 + 4y^2 = 196 - 96
=) 9x^2 + 4y^2 = 100
________________________
Now,
27x^3 + 8y^3
= (3x)^3 + (2y)^3
Since, a^3 + b^3 = (a+b)(a^2 + b^2 + ab)
= ( 3x + 2y) {( 3x)^2 + (2y)^2 + (3x)(2y) }
= (3x+2y) ( 9x^2 + 4y^2 - 6xy)
= (14) ( 100 - 6 (8) )
= 14 × 52
= 728
Hope it helps u :)
3x + 2y = 14 ( Given)
xy = 8 ( Given)
__________________
( 3x+2y)^2 = (14)^2
=) (3x)^2 + (2y)^2 + 2 (3x)(2y) = 196
=) 9x^2 + 4y^2 + 12xy = 196
=) 9x^2 + 4y^2 + 12 (8) = 196
=) 9x^2 + 4y^2 = 196 - 96
=) 9x^2 + 4y^2 = 100
________________________
Now,
27x^3 + 8y^3
= (3x)^3 + (2y)^3
Since, a^3 + b^3 = (a+b)(a^2 + b^2 + ab)
= ( 3x + 2y) {( 3x)^2 + (2y)^2 + (3x)(2y) }
= (3x+2y) ( 9x^2 + 4y^2 - 6xy)
= (14) ( 100 - 6 (8) )
= 14 × 52
= 728
Hope it helps u :)
Similar questions