Math, asked by jashan667, 1 year ago

Find the value of √3-1/√3+1 -a+b√3

Answers

Answered by rajeev378
11
\huge\boxed{\texttt{\fcolorbox{Red}{aqua}{Hey Mate!!!}}}

<b><i><font face=Copper black size=4 color=blue> Here is your answer.
 \frac{ \sqrt{3} - 1}{ \sqrt{3} + 1 } = a + b \sqrt{3} \\ taking \: lhs \\ = \frac{ (\sqrt{3} - 1) }{ (\sqrt{3} + 1) } \times \frac{( \sqrt{3} - 1)}{( \sqrt{3} - 1) } \\ = \frac{ \sqrt{3}( \sqrt{3} - 1) - 1( \sqrt{3} - 1) }{( \sqrt{3}) {}^{2} - 1 {}^{2} } \\ = \frac{3 - \sqrt{3} - \sqrt{3} + 1 }{3 - 1} \\ = \frac{4 - 2 \sqrt{3} }{2} \\ = \frac{4}{2} - \frac{2 \sqrt{3} }{2} \\ = 2 - \sqrt{3} \\ = a + b \sqrt{3} \\ on \: comparing \: rhs \\ a = 2 \\ b = - 1
Therefore the value of
a = 2
b = -1

\large{\red{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\underline{\underline{\underline{Hope \: it \: helps \: you}}}}}}}}}}}}}}}
Answered by king1245
11
Here is your answer
 \frac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 }  \times  \frac{ \sqrt{3}   - 1}{ \sqrt{3}  - 1}  \\  =  \frac{3 -  \sqrt{3}  -  \sqrt{3}  + 1}{ \sqrt{3} {}^{2}  - 1 {}^{2}  }  \\  =  \frac{4 - 2 \sqrt{3} }{3 - 1}  \\  = 2 -  \sqrt{3}  \\  = a + b \sqrt{3}
so
a = 2
b= -1

Hope it helps
Similar questions