Math, asked by uday618, 1 year ago

please solve this problem

Attachments:

Answers

Answered by ishanit
4
HEY MATE,
HERE IS YOUR ANSWER
_____________❤️___________

please like it and
 mark \: \: as \: \: brainlist

don't forget to follow me
TH@NkS
Attachments:

ishanit: if any quiries text me
ishanit: plz mark as brainlist
ishanit: like if ,it helps you
Answered by MOSFET01
7
\bold{\underline{\underline{\huge{Solution}}}}

\implies \dfrac{sec\: \theta \: + \: tan\: \theta \: - \: ( sec^{2}\: \theta \: - \: tan^{2}\: \theta)}{(tan\: \theta \: - \: sec\: \theta \: + \: 1)}

\implies \dfrac{(sec\: \theta \: + \: tan\: \theta)\: - \: [(sec\: \theta \: + \: tan\: \theta)(sec\: \theta \: - \: tan\: \theta)]}{(tan\: \theta \: - \: sec\: \theta\: + \: 1)}

\implies (sec\: \theta \: + \: tan\: \theta)\dfrac{[1\: - \: (sec\: \theta\: - \: tan \: \theta)]}{tan\: \theta \: - \: sec\: \theta \: + \: 1}

\implies (sec\: \theta \: + \: tan\: \theta)\dfrac{(1\: - \: sec\: \theta\: + \: tan \: \theta)}{tan\: \theta \: - \: sec\: \theta \: + \: 1}

\implies (sec\: \theta \: + \: tan\: \theta)\dfrac{(1\: - \: sec\: \theta\: + \: tan \: \theta\: )}{(1 \: - \: sec\: \theta \: + \: tan\: \theta)}

after elimination :

\therefore\: ( sec \: \theta\: + \: tan \: \theta )

\implies \dfrac{1}{cos\: \theta} \: + \: \dfrac{sin\: \theta}{cos\: \theta}

\implies \dfrac{1\: + \: sin\: \theta}{cos\: \theta}

multiply numerator and denominator by ( 1 - sin @ )

\implies \dfrac{1\: + \: sin\: \theta}{cos\: \theta}\times\dfrac{1\: - \: sin \: \theta}{1\: - \: sin \: \theta}

\implies \dfrac{1 \: - \: sin^{2}\: \theta}{cos\: \theta \: ( 1 \: - \: sin\: \theta)}

\implies \dfrac{cos^{2}\: \theta}{cos\: \theta \: ( 1 \: - \: sin\: \theta)}

\implies \dfrac{cos\: \theta}{( 1 \: - \: sin\: \theta)}

RHS

\bold{\boxed{\boxed{LHS \: = \: RHS}}}

\bold{\huge{Hence \: Proved}}
Attachments:

Anonymous: Nice answer bhaiya
MOSFET01: thanks
tejasgupta: Great
MOSFET01: :)
Similar questions