find the value of √3 *cosec 20 - sec 20 .
Answers
Answered by
37
√3cosec20°-sec20°
=√3/sin20°-1/cos20°
=(√3cos20°-sin20°)/(sin20°.cos20°)
=2{(√3/2)cos20°-(1/2)sin20°}/1/2(2sin20°.cos20°)
=4{sin60°.cos20°-cos60°sin20°}/(2sin20°.cos20°)
use formula
2sinA.cosA=sin2A
and ,
sinA.cosB-cosA.sinB=sin(A-B)
hence,
=4sin(60°-20°)/(sin40°)
=4sin40°/sin40°=4
=√3/sin20°-1/cos20°
=(√3cos20°-sin20°)/(sin20°.cos20°)
=2{(√3/2)cos20°-(1/2)sin20°}/1/2(2sin20°.cos20°)
=4{sin60°.cos20°-cos60°sin20°}/(2sin20°.cos20°)
use formula
2sinA.cosA=sin2A
and ,
sinA.cosB-cosA.sinB=sin(A-B)
hence,
=4sin(60°-20°)/(sin40°)
=4sin40°/sin40°=4
Answered by
19
√3cosec20°-sec20°
=√3/sin20°-1/cos20°
=(√3cos20°-sin20°)/(sin20°.cos20°)
=2{(√3/2)cos20°-(1/2)sin20°}/1/2(2sin20°.cos20°)
=4{sin60°.cos20°-cos60°sin20°}/(2sin20°.cos20°)
use formula
2sinA.cosA=sin2A
and ,
sinA.cosB-cosA.sinB=sin(A-B)
hence,
=4sin(60°-20°)/(sin40°)
=4sin40°/sin40°=4
=√3/sin20°-1/cos20°
=(√3cos20°-sin20°)/(sin20°.cos20°)
=2{(√3/2)cos20°-(1/2)sin20°}/1/2(2sin20°.cos20°)
=4{sin60°.cos20°-cos60°sin20°}/(2sin20°.cos20°)
use formula
2sinA.cosA=sin2A
and ,
sinA.cosB-cosA.sinB=sin(A-B)
hence,
=4sin(60°-20°)/(sin40°)
=4sin40°/sin40°=4
Similar questions
English,
8 months ago
India Languages,
8 months ago
Physics,
1 year ago
Computer Science,
1 year ago