find the value of:
(3 tan 41/cot 49)^2 - (sin35sec55/tan10tan20tan60tan70tan80)^2
Answers
Answer:
Step-by-step explanation:
Step 1 :-
cot 49 = cot (90 - 41) = tan 41
∴ ( 3 × )²
= ( 3 × )²
= ( 3 × 1 )²
= 9
Step 2 :-
sec 55 = sec (90 - 35) = cosec 35
∴ ( sin 35 × sec 55 ) = ( sin 35 × cosec 35 ) = 1
Step 3 :-
tan 80 = tan (90 - 10) = cot 10
tan 70 = tan (90 - 20) = cot 20
∴ ( tan 10 × tan 20 × tan 60 × tan 70 × tan 80 )
= ( tan 10 × cot 10 × tan 20 × cot 20 × tan 60 )
= ( 1 × 1 × tan 60 )
=
Hence,
( 3 × )² - ( 3 × )²
= 9 - ()² [Using values from step 1, 2 and 3]
= 9 -
=
Answer:
26/3
Step-by-step explanation:
Given find the value of:
(3 tan 41/cot 49)^2 - (sin35 sec55 / tan10 tan20 tan60 tan70 tan80)^2
(3 tan 41 / cot (90 - 41) - sin 35 sec(90 - 35) / tan 10. tan 20. tan 60 . tan(90 - 20) tan(90 - 10)
(3 tan 41 / tan 41)^2 - (sin 35 sec(90 - 35) / tan 10 tan 20 tan 60 tan(90 - 20)tan(90 - 10))^2
(3 x 1)^2 - (sin 35 cosec 35 / tan 10. cot 10. tan 20. cot 20. tan 60)^2
9 - (1 / 1 x 1 x √3)^2 (because cosec 35 = 1/sin35)
9 - 1 / 3
27 - 1 / 3
26 / 3