Math, asked by areeshaanwar, 11 months ago

Find the value of
(.555 *.555 - .555 *.020 +
020 ~ .020)/
(.555.555 ~ .555) + (.020
.020 .020)
(A) 1.55
(B) 1.74
(C) 2.36
(D)5.02​

Answers

Answered by MaheswariS
3

\textbf{Given:}

\mathrm{\dfrac{0.555{\times}0.555-0.555{\times}0.020+0.020{\times}0.020}{0.555{\times}0.555{\times}0.555+0.020{\times}0.020{\times}0.020}}

\textbf{To find:}

\text{The value of}

\mathrm{\dfrac{0.555{\times}0.555-0.555{\times}0.020+0.020{\times}0.020}{0.555{\times}0.555{\times}0.555+0.020{\times}0.020{\times}0.020}}

\textbf{Solution:}

\text{Consider,}

\mathrm{\dfrac{0.555{\times}0.555-0.555{\times}0.020+0.020{\times}0.020}{0.555{\times}0.555{\times}0.555+0.020{\times}0.020{\times}0.020}}

\mathrm{=\dfrac{(0.555)^2-0.555{\times}0.020+(0.020)^2}{(0.555)^3+(0.020)^3}}

\text{Using the identity}

\boxed{\mathrm{\bf\,a^3+b^3=(a+b)(a^2-ab+b^2)}}

\mathrm{=\dfrac{(0.555)^2-0.555{\times}0.020+(0.020)^2}{(0.555+0.020)((0.555)^2-0.555{\times}0.020+(0.020)^2)}}

\mathrm{=\dfrac{1}{0.555+0.020}}

\mathrm{=\dfrac{1}{0.575}}

\mathrm{=\dfrac{1000}{575}}

\mathrm{=1.74}

\implies\mathrm{\dfrac{0.555{\times}0.555-0.555{\times}0.020+0.020{\times}0.020}{0.555{\times}0.555{\times}0.555+0.020{\times}0.020{\times}0.020}=1.74}

\textbf{Answer:}

\textbf{Option (B) is correct}

Find more:

P+p²+p³+p⁴+p⁵+p⁶+p⁷)/(p⁻³+p⁻⁴+p⁻⁵+p⁻⁶+p⁻⁷+p⁻⁸+p⁻⁹)

https://brainly.in/question/23339901

Similar questions