Math, asked by vk003789, 7 months ago

find the value of (6-4√3)/(6+√3) by rationalistising the denominator.

Answers

Answered by anindyaadhikari13
11

\bf\large\underline\blue{Question:-}

  • Find the value of \frac{6-4\sqrt{3}}{6+\sqrt{3}} by rationalizing the denominator.

\bf\large\underline\blue{Solution:-}

 \frac{6 - 4 \sqrt{3} }{6 +  \sqrt{3} }

 =  \frac{6 - 4 \sqrt{3} }{6 +  \sqrt{3} }  \times  \frac{6 -  \sqrt{3} }{6 -  \sqrt{3} }

 =  \frac{(6 - 4 \sqrt{3})(6 -  \sqrt{3} ) }{36 - 3}

 =  \frac{36 - 6 \sqrt{3} - 24 \sqrt{3} + 12  }{33}

 =  \frac{48 -30 \sqrt{3}  }{33}

 =  \frac{ \cancel{3}(16 - 10 \sqrt{3}) }{ \cancel{3} \times 11}

 =  \frac{16 - 10 \sqrt{3} }{11}

\bf\large\underline\blue{Answer:-}

  • \frac{16 - 10 \sqrt{3} }{11}
Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
109

\huge\sf\pink{Answer}

\sf \dfrac{16-10\sqrt{3}}{11}

━━━━━━━━━━━━━

\huge\sf\blue{Given}

\sf \dfrac{6-4\sqrt{3}}{6+\sqrt{3}}

━━━━━━━━━━━━━

\huge\sf\gray{To \:Find}

◈ It's rationalised form?

━━━━━━━━━━━━━

\huge\sf\purple{Steps}

\large\underline{\underline{\sf Concept}}

So here we shall simply multiply the given fraction by the conjugate of its denominator, a conjugation is a number with the opposite side. We do so just to eliminate the radical and thus making our calculation much easier!!

━━━━━━━━━

\sf \dfrac{6-4\sqrt{3}}{6+\sqrt{3}}

\sf \dfrac{6-4\sqrt{3}}{6+\sqrt{3}} \times \dfrac{6-\sqrt{3}}{6-sqrt{3}}

\sf \dfrac{(6)(6) +(6)(-\sqrt{3})-(4\sqrt{3})(6)-(4\sqrt{3})(-\sqrt{3})}{(6)(6)+(6)(-\sqrt{3})+(\sqrt{3})(6)+(\sqrt{3})(-\sqrt{3})}

\sf \dfrac{36-6\sqrt{3}-24\sqrt{3}+12}{36-6\sqrt{3}+6\sqrt{3} -3}

\sf \dfrac{48-30\sqrt{3}}{33}

\sf \dfrac{3(16-10\sqrt{3}}{3\times 11}

\sf \orange{\dfrac{16-10\sqrt{3}}{11}}

━━━━━━━━━━━━━━━━━━

Similar questions