Math, asked by dhruvKumar1502, 7 months ago

Please help find the answer-->

Attachments:

Answers

Answered by anindyaadhikari13
9

\bf\large\underline\blue{Question:-}

  • If 2x+3y=13 and xy=6, find the value of 8x^{3}+27{y}^{3}.

\bf\large\underline\blue{Solution:-}

  • Before we start, we have to know the identity to be used while solving the problem.
  • Here is the identity \downarrow

 {x}^{3}  +  {y}^{3}  =  {(x + y)}^{3}  - 3xy(x + y)

Now, we will solve the problem.

2x + 3y = 13

xy = 6

\bf\underline\blue{Therefore,}

8 {x}^{3}  + 27 {y}^{3}

 =  {(2x)}^{3}  +  {(3y)}^{3}

 =  {(2x + 3y)}^{3}  - 2 \times 2x \times 3y(2x + 3y)

 =  {(2x + 3y)}^{3}  - 12xy(2x + 3y)

 =  {13}^{3}  - 12 \times 6 \times 13

 = 2197 - 936

 = 1261

\bf\large\underline\blue{Answer:-}

  • 8 {x}^{3}  + 27 {y}^{3}  = 1261
Answered by Anonymous
17

◕ Question :

If 2x + 3y = 13 and xy = 6 then find the value of 8x³ + 27y³.

◕ To Find :

The value of 8x³ and 27y³.

◕ Given :

  • (x + y) = 13
  • xy = 6

◕ We Know :

  • \sf{(a + b)^{3} = (a + b)(a^{2} - ab + b^{2})}

  • \sf{(a + b)^{2} + 2ab = a^{2} + b^{2}}

◕ Solution :

\purple{\sf{8x^{3} + 27y^{3}}} \\ \\ \\ \implies \sf{(2x)^{3} + (3y)^{3}} \\ \\ \\

Using the Identity ,

\sf{(a + b)^{3} = (a + b)(a^{2} - ab + b^{2})}

We get :

\\

\implies \sf{(2x + 3y)\big((2x)^{2} - 6xy + (3y)^{2}\big)} \\ \\ \\

Putting the value of (x + y) and (xy) , we get :

\\

\implies \sf{(13)\big((2x)^{2} - 6 \times 6 + (3y)^{2}\big)} \\ \\ \\\implies \sf{(13)\big((2x)^{2} - 36 + (3y)^{2}\big)} \\ \\ \\

Using the identity :

\sf{(a + b)^{2} - 2ab = a^{2} + b^{2}}

We Get :

\\

\implies \sf{(13)\big((2x + 3y)^{2} - 2ab - 36\big)}\\ \\ \\

Putting the value of (x + y) and (xy) , we get :

\\

\implies \sf{(13)\big(13^{2} - 12 \times 6 - 6\big)}\\ \\ \\ \implies \sf{(13)\big(169 - 72 - 36\big)} \\ \\ \\ \implies \sf{(13)\big(169 - 108\big)} \\ \\ \\ \implies \sf{13 \times 61} \\ \\ \\ \implies \sf{793} \\ \\ \\ \therefore \purple{\sf{8a^{3} + 27b^{3} = 793}}

Similar questions