Find the value of (64/25)-3/2
Answers
Answer:
\left(\frac{64}{25}\right)^{\frac{-3}{2}}= \frac{125}{512}
Explanation:
Given \left(\frac{64}{25}\right)^{\frac{-3}{2}}
= \left(\frac{25}{64}\right)^{\frac{3}{2}}
/* By Exponential Law :*/
\boxed{\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}}
= \left(\frac{5^{2}}{8^{2}}\right)^{\frac{3}{2}}
= \left(\frac{5}{8}\right)^{2\times\frac{3}{2}}
/* By Exponential Law :*/
\boxed {\left(a^{m}\right)^{n}=a^{mn}}
=\left(\frac{5}{8}\right)^{3}
= \frac{5^{3}}{8^{3}}
/* By Exponential Law :*/
\boxed { \left(\frac{a}{b}\right)^{m} = \frac{a^{m}}{b^{m}}}
= \frac{5\times5\times5}{8\times8\times8}
= \frac{125}{512}
Therefore,
\left(\frac{64}{25}\right)^{\frac{-3}{2}}
= \frac{125}{512}
Step-by-step explanation:
64/25-3/2
take lcm
(128-75)/58
=>53/58
i hope it's helpful..
mark me as a brainliest..