find the value of 8ab (a2+b2) when a+b=-5 and a-b=5
Answers
Solution :
(a+b) = -5 and (a-b) = 5
Adding these two equations
>> 2a + b - b = -5 + 5 = 0
>> 2a = 0
>> a = 0
& b = -5
To find :
The value of 8ab(a² + b²)
> 8 × 0 × -5 ( 0 + 25)
> 0
This is the required answer.
_______________________________________
Additional Information :
(a + b)² = a² + 2ab + b²
(a + b)² = (a - b)² + 4ab
(a - b)² = a² - 2ab + b²
(a - b)² = (a + b)² - 4ab
a² + b² = (a + b)² - 2ab
a² + b² = (a - b)² + 2ab
2 (a² + b²) = (a + b)² + (a - b)²
4ab = (a + b)² - (a - b)²
ab = {(a + b)/2}² - {(a-b)/2}²
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
(a + b)³ = a³ + 3a²b + 3ab² b³
(a + b)³ = a³ + b³ + 3ab(a + b)
(a - b)³ = a³ - 3a²b + 3ab² - b³
a³ + b³ = (a + b)( a² - ab + b² )
a³ + b³ = (a + b)³ - 3ab( a + b)
a³ - b³ = (a - b)( a² + ab + b²)
a³ - b³ = (a - b)³ + 3ab ( a - b )
__________________________________________
Appropriate Question :
find the value of 8ab (a² + b²) when a + b= -5 and a - b = 5
How to do :
1) We need to get the value of a² + b² using (a + b)² + (a - b)² = 2(a² + b²)
2) We need to find the value of ab using (a + b)² - (a - b)² = 4ab
3) Then putting those values in 8ab (a² + b²) we can find the answer
Formula Used :
- (a + b)² + (a - b)² = 2(a² + b²)
- (a + b)² - (a - b)² = 4ab
Solution :
We have been provided with the values of a + b and a - b
Using the identity (a + b)² + (a - b)² = 2(a² + b²) we get
- (a + b)² + (a - b)² = 2(a² + b²)
Putting the values we get
- ( -5)² + (5)² = 2(a² + b²)
- 25 + 25 = 2(a² + b²)
Transposing 2 on the right hand side we get
- 50/2 = a² + b²
- a² + b² = 25
∴ The value of a² + b² is 25
Now to find ab
For ab we need to apply (a + b)² - (a - b)² = 4ab
- (a + b)² - (a - b)² = 4ab
Inserting the values we find :
- ( -5)² - (5)² = 4ab
- 25 - 25 = 4ab
- 0/4 = ab
- ab = 0
∴ The value of ab is 0
According to the given question we need to find 8ab (a² + b²)
- 8ab (a² + b²)
Putting the values we have :
- 8 × 0 ( 25)²
- 0 × 625
- 0
∴ The value of 8ab (a² + b²) is 0
Regards
# BeBrainly