Math, asked by saiganesh38, 9 months ago

find the value of a^3+b^3+c^3-3ab c when a+b+c=8 and ab+bc+ca= 25​

Answers

Answered by adrija7
3

Step-by-step explanation:

 {a}^{3}  +  {b}^{3}  +  {c}^{3} - 3abc = (a + b + c)( {a}^{2}  +  {b}^{2}  +  {c}^{2}  -ab  -  bc - ca) \\  =>  {a}^{3}  +  {b}^{3}  +  {c}^{3} - 3abc  = 8{(a + b + c)}^{2}  - 2(ab + bc + ca) - (ab + bc + ca) \\ =>  {a}^{3}  +  {b}^{3}  +  {c}^{3} - 3abc  = 8{(8)}^{2}  - 2(25) - (25) \\ =>  {a}^{3}  +  {b}^{3}  +  {c}^{3} - 3abc  = 512 - 50- 25\\ =>  {a}^{3}  +  {b}^{3}  +  {c}^{3} - 3abc  = 512 - 75 \\=>  {a}^{3}  +  {b}^{3}  +  {c}^{3} - 3abc  =437

Similar questions