Math, asked by saksanarithu, 8 months ago

Find the value of a (3 - sqrt(5))/(3 + 2sqrt(5)) = a * sqrt(5) - 19/11​

Answers

Answered by pulakmath007
17

SOLUTION

TO DETERMINE

The value of a when

\displaystyle\sf{ \frac{3 -  \sqrt{5} }{3 + 2 \sqrt{5} } =  \frac{a \sqrt{5}  - 19}{11}  }

EVALUATION

Here it is given that

\displaystyle\sf{ \frac{3 -  \sqrt{5} }{3 + 2 \sqrt{5} } =  \frac{a \sqrt{5}  - 19}{11}  }

We now simplify it as below

\displaystyle\sf{ \frac{3 -  \sqrt{5} }{3 + 2 \sqrt{5} } =  \frac{a \sqrt{5}  - 19}{11}  }

\displaystyle\sf{  \implies \: \frac{(3 -  \sqrt{5} )(3  -  2 \sqrt{5})}{(3 + 2 \sqrt{5} )(3  -  2 \sqrt{5})} =  \frac{a \sqrt{5}  - 19}{11}  }

\displaystyle\sf{  \implies \: \frac{9 - 6 \sqrt{5}  - 3 \sqrt{5} + 10 }{(9 - 20)} =  \frac{a \sqrt{5}  - 19}{11}  }

\displaystyle\sf{  \implies \: \frac{19 - 9 \sqrt{5}  }{ - 11} =  \frac{a \sqrt{5}  - 19}{11}  }

\displaystyle\sf{  \implies \: \frac{9 \sqrt{5} - 19  }{ 11} =  \frac{a \sqrt{5}  - 19}{11}  }

Comparing both sides we get a = 9

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x=√3a+2b + √3a-2b / √3a+2b - √3a-2b

prove that bx²-3ax+b=0

https://brainly.in/question/19664646

2. the order of the surd 7√8

https://brainly.in/question/31962770

Answered by pritish7a2
1

Step-by-step explanation:

Mark me as brainblister

Attachments:
Similar questions