Math, asked by rahulprasad2004, 1 year ago

find the value of a and b

Attachments:

Answers

Answered by Anonymous
5
Hey buddy!!

here is yr answer....


 =  >  \frac{ \sqrt{3} + 1 }{ \sqrt{3} - 1 }  = a + b \sqrt{3}  \\  \\rationalise \: the \: denominator \\  \\   =  >  \frac{ \sqrt{3}  + 1}{ \sqrt{3}  - 1}  \times  \frac{ \sqrt{3}  + 1}{ \sqrt{3} + 1 }  = a + b \sqrt{3}  \\  \\  =  >   \frac{( \sqrt{3} + 1)^{2}  }{( \sqrt{3 } - 1)( \sqrt{3}  + 1) } = a + b \sqrt{3}   \\  \\  =  >  \frac{3 + 2 \sqrt{3} + 1 }{3 - 1}  = a + b \sqrt{3}  \\  \\  =  >  \frac{4 + 2 \sqrt{3} }{2}  = a + b  \sqrt{3}  \\  \\  =  >  \frac{2(2 +  \sqrt{3}) }{2}  = a + b \sqrt{3}  \\  \\  =  > 2 +  \sqrt{3}  = a + b \sqrt{3}  \\  \\  =  > 2 + 1 \sqrt{3}  = a + b \sqrt{3}

Therefore, a = 2 , b = 1


Hope it hlpz.

Anonymous: mark her answer as brainalest
Anonymous: ^_^
Anonymous: bcoz, she deserves it
rahulprasad2004: wait
DaIncredible: why wait
DaIncredible: bro... mark the person as brainliest who you think have given best answer... not any particular ree
DaIncredible: ^_^
DaIncredible: =_=
rahulprasad2004: what
rahulprasad2004: happy
Answered by DaIncredible
5
Heya friend,
Here is the answer you were looking for:

Identities used :

 {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}

 \frac{ \sqrt{3} + 1  }{ \sqrt{3} - 1 }  = a + b \sqrt{3}  \\

On rationalizing the denominator we get,

 =  \frac{ \sqrt{3}  + 1}{ \sqrt{3}  - 1}  \times  \frac{ \sqrt{3}    +  1}{ \sqrt{3}   +  1}  \\  \\   =  \frac{ {( \sqrt{3}) }^{2} +  {(1)}^{2}   + 2( \sqrt{3} )(1)}{ {( \sqrt{3}) }^{2} -  {(1)}^{2}  }  \\  \\  =  \frac{3 + 1 + 2 \sqrt{3} }{3 - 1}  \\  \\  \frac{4 + 2 \sqrt{3} }{2}  \\  \\  =  \frac{2(2 +  \sqrt{3} )}{2}  \\  \\  = 2 +  \sqrt{3}  \\

On comparing we get,

2 +  \sqrt{3}  = a + b \sqrt{3}  \\  \\ a = 2 \:  :  \: b = 1

Hope this helps!!!

Feel free to ask in the comment section if you have any doubt regarding to my answer...

@Mahak24

Thanks...
☺☺
Similar questions