if sin square A = 1/2 tan square 45° where A is an acute angle then find the value of A
Answers
Answered by
128
Answer :
Given,
sin²A = 1/2 tan²45°
⇒ sin²A = 1/2 × 1 [∵ tan45° = 1]
⇒ sin²A = 1/2
⇒ sin²A = sin²45
⇒ sinA = sin45°,
since A is an acute angle
⇒ A = 45°
∴ A = 45°
#MarkAsBrainliest
Given,
sin²A = 1/2 tan²45°
⇒ sin²A = 1/2 × 1 [∵ tan45° = 1]
⇒ sin²A = 1/2
⇒ sin²A = sin²45
⇒ sinA = sin45°,
since A is an acute angle
⇒ A = 45°
∴ A = 45°
#MarkAsBrainliest
Answered by
0
Answer:
A = 45°
Step-by-step explanation:
Given:- sin² A = 1/2 tan² 45° where A is an acute angle.
To find:- The value of A .
Solution:-
An acute angle is an angle whose value measures less than 90°. For Example - 30°, 45°, 65°, etc.
So, A will be less than 90°.
The given expression is
sin² A = 1/2 tan² 45°
⇒ sin² A = × ( 1 )² [∵ Acc. to trigonometric formulas, tan 45° = 1]
⇒ sin² A =
⇒ sin A = √
⇒ sin A =
⇒ A = 45° [∵ sin 45° = 1/√2]
Therefore, the value of A is 45°.
#SPJ3
View similar questions in the below link provided:
https://brainly.in/question/5868137
https://brainly.in/question/4261808
Similar questions