Find the value of a and b if √2+1/√2-1 - √2-1/√2+1= a+√2 b
Answers
Answered by
56
(√2+1/√2-1) - (√2-1/√2+1) = a+√2b
⇒ (√2+1/√2-1) × (√2+1/√2+1) - (√2-1/√2+1) × (√2-1/√2-1)
⇒ (√2+1)²/(√2-1)(√2+1) - (√2-1)²/(√2+1)(√2-1)
⇒ (√2)²+(1)²+1×1×√2/(√2)²-(1)² - (√2)²+(1)²-1×1×√2/(√2)²-(1)²
⇒ 2+1+1×√2/2-1 - 2+1-1×√2/2-1
⇒ 4√2 - 2√2
= 2√2 = a+√2b
then, a = 0 and b = 2 answer
⇒ (√2+1/√2-1) × (√2+1/√2+1) - (√2-1/√2+1) × (√2-1/√2-1)
⇒ (√2+1)²/(√2-1)(√2+1) - (√2-1)²/(√2+1)(√2-1)
⇒ (√2)²+(1)²+1×1×√2/(√2)²-(1)² - (√2)²+(1)²-1×1×√2/(√2)²-(1)²
⇒ 2+1+1×√2/2-1 - 2+1-1×√2/2-1
⇒ 4√2 - 2√2
= 2√2 = a+√2b
then, a = 0 and b = 2 answer
Answered by
4
Answer:
a2√2/3 if √1+a - √1-a/√1+a + √1-a=?
Similar questions