Math, asked by mala16, 1 year ago

find the value of a and b in the following . 3+√7/3-√7=a+b√7

Answers

Answered by ArchitectSethRollins
3
Hi friend
---------------
Your answer
--------------------

 \frac{(3 +  \sqrt{7} )}{(3 -  \sqrt{7}) }  = a \:  +  \: b \sqrt{7}  \\  \\ first \: we \: need \: to \: rationalise \: the \: denominator. \\  \\  =  >  \frac{(3 +  \sqrt{7}) }{(3 -  \sqrt{7} )}  \times  \frac{(3 +  \sqrt{7}) }{(3 +  \sqrt{7} )}  \\  \\   =  >  \frac{(3 +  \sqrt{7} ) {}^{2} }{(3) {}^{2}  - ( \sqrt{7} ) {}^{2} }  \\  \\  =  >  \frac{9 + 6 \sqrt{7}  + 7}{9 - 7}  \\  \\   = >  \frac{16 + 6 \sqrt{7} }{2}  \\  \\  =  >  \frac{16}{2}  +  \frac{6 \sqrt{7} }{2}  = a \:  +  \: b \sqrt{7}  \\  \\  =  > 8 + 3 \sqrt{7}  = a \:  +  \: b \sqrt{7}  \\  \\ therefore \\  \\ a \:  =  8 \: and \: b \:  = 3

HOPE IT HELPS
Answered by sk30011969
0

Hi friend

---------------

Your answer

--------------------

\begin{lgathered}\frac{(3 + \sqrt{7} )}{(3 - \sqrt{7}) } = a \: + \: b \sqrt{7} \\ \\ first \: we \: need \: to \: rationalise \: the \: denominator. \\ \\ = > \frac{(3 + \sqrt{7}) }{(3 - \sqrt{7} )} \times \frac{(3 + \sqrt{7}) }{(3 + \sqrt{7} )} \\ \\ = > \frac{(3 + \sqrt{7} ) {}^{2} }{(3) {}^{2} - ( \sqrt{7} ) {}^{2} } \\ \\ = > \frac{9 + 6 \sqrt{7} + 7}{9 - 7} \\ \\ = > \frac{16 + 6 \sqrt{7} }{2} \\ \\ = > \frac{16}{2} + \frac{6 \sqrt{7} }{2} = a \: + \: b \sqrt{7} \\ \\ = > 8 + 3 \sqrt{7} = a \: + \: b \sqrt{7} \\ \\ therefore \\ \\ a \: = 8 \: and \: b \: = 3\end{lgathered}

(3−

7

)

(3+

7

)

=a+b

7

firstweneedtorationalisethedenominator.

=>

(3−

7

)

(3+7) × (3+7 )

(3+7 )

=>

(3) 2−(72)

(3+ 72)

=>

9−7

9+6

7+7

=>

2

16+6

7

=>

2

16+ 26 7

=a+b

7

=>8+3

7

=a+b

7

Therefore

a=8andb=3

Similar questions