find the value of a and b in the following . 3+√7/3-√7=a+b√7
Answers
---------------
Your answer
--------------------
HOPE IT HELPS
Hi friend
---------------
Your answer
--------------------
\begin{lgathered}\frac{(3 + \sqrt{7} )}{(3 - \sqrt{7}) } = a \: + \: b \sqrt{7} \\ \\ first \: we \: need \: to \: rationalise \: the \: denominator. \\ \\ = > \frac{(3 + \sqrt{7}) }{(3 - \sqrt{7} )} \times \frac{(3 + \sqrt{7}) }{(3 + \sqrt{7} )} \\ \\ = > \frac{(3 + \sqrt{7} ) {}^{2} }{(3) {}^{2} - ( \sqrt{7} ) {}^{2} } \\ \\ = > \frac{9 + 6 \sqrt{7} + 7}{9 - 7} \\ \\ = > \frac{16 + 6 \sqrt{7} }{2} \\ \\ = > \frac{16}{2} + \frac{6 \sqrt{7} }{2} = a \: + \: b \sqrt{7} \\ \\ = > 8 + 3 \sqrt{7} = a \: + \: b \sqrt{7} \\ \\ therefore \\ \\ a \: = 8 \: and \: b \: = 3\end{lgathered}
(3−
7
)
(3+
7
)
=a+b
7
firstweneedtorationalisethedenominator.
=>
(3−
7
)
(3+7) × (3+7 )
(3+7 )
=>
(3) 2−(72)
(3+ 72)
=>
9−7
9+6
7+7
=>
2
16+6
7
=>
2
16+ 26 7
=a+b
7
=>8+3
7
=a+b
7
Therefore
a=8andb=3