Math, asked by ashuguptafzd16, 8 months ago

find the value of A and B root 5 minus 1 upon root 5 + 1 is equal to a minus b root 5

Attachments:

Answers

Answered by kaushik05
7

Given:

 \star \:  \frac{ \sqrt{5}  - 1}{ \sqrt{5} + 1 }  = a - b \sqrt{5}  \\

To find :

• The value of a and b .

Solution:

 \implies \:  \frac{ \sqrt{5} - 1 }{ \sqrt{5}  + 1}  \\

Rationalise the denominator :

 \implies \:  \frac{ \sqrt{5}  - 1 }{ \sqrt{5} + 1 }  \times  \frac{ \sqrt{5}  - 1 }{ \sqrt{5}  - 1}  \\  \\  \implies \:  \frac{ {( \sqrt{5}  - 1)}^{2} }{( { \sqrt{5}) }^{2} -  {(1)}^{2}  }  \\  \\  \implies \:  \frac{5 + 1 - 2 \sqrt{5} }{5 - 1}  \\  \\  \implies \frac{6 - 2 \sqrt{5} }{4}  \\  \\  \implies \:  \frac{3 -  \sqrt{5} }{4}  \\  \\  \implies \:  \frac{3}{4}  -  \frac{ \sqrt{5} }{4}

Now , compare with a-b√5 we get ,

• a = 3/4

and

• b = 1/4.

Formula used :

 \star \:  \bold{ {x}^{2}  -  {y}^{2}  = (x + y)(x - y)} \\  \\  \star \bold{{(x  -  y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy}

Answered by radhikaagarwal92
2

Answer:

My name is Radhika. I'm from Kolkata

You are from?

Similar questions