Math, asked by pooniaparmod8263, 10 months ago

Find the value of a and b so that (x+1) (x-1)are factors of x4+ ax3- 3x2 +2x+b.

Answers

Answered by srisaisagarteja
6

Step-by-step explanation:

put x=1

1+a-3+2+b=0

  • a+b=0

put x=-1

1-a-3-2+b=0

b-a=4

  • b=4+a.

a+4+a=0

2a=-4

a=-2

b=-a

b=2

Answered by leenasinghal80
0

Answer:

Question :-

\textsf{Find the values of "a" and "b"} .

\tt{\small{Such\; that \;(x+1) \;and\; (x-1) \;are\; the\; factors\; of \;{p(x) = {x}^{4} + a{x}^{3} - 3{x}^{3} +2x + b}}}

\rule{400}{4}

Given :

\mathsf{ p(x) = {x}^{4} +a{x}^{3} - 3{x}^{3} +2x + b}

Let's take (x+1) & (x-1) as the factors .

\rule{400}{4}

Required to find :-

Values of a and b ?

\rule{400}{4}

Solution :

Given expression :-

\mathsf{ p(x) = {x}^{4} +a{x}^{3} - 3{x}^{3} +2x + b}

As ,

(x+1) & (x-1) are the factors

Let ,

x + 1 = 0

x = -1

Now substitute this value in place of x in the above expression

\tt{p(-1) = {(-1)}^{4} + a{(-1)}^{3} - 3{(-1)}^{3} + 2(-1) + b}

\tt{ p(-1) = 1 + a(-1) -3(-1) -2 + b }

\tt{ p(-1) = 1 - a + 3 - 2 + b}

\tt{ p(-1) = 4 - a -2 + b }

\tt{p(-1) = 2 - a + b }

\tt{\red{\implies{ b = a - 2}}}{\tt{\longrightarrow{\green{Equation - 1}}}}

Similarly,

(x - 1) is a factor

So Let ,

x - 1 = 0

x = 1

Substitute this value in place of x in p(x)

\tt{ p(1) = {(1)}^{4} + a{(1)}^{3} - 3{(1)}^{3} + 2(1) + b }

\tt{ p(1) = 1 + a(1) - 3(1) + 2 + b}

\tt{ p(1) = 1 + a - 3 + 2 + b }

\longrightarrow{\tt{\red{Substitute\; the\; value\; of \;b\; from\; equation\; 1 \;}}}

\tt{ p(1) = 1 + a - 3 + 2 + a - 2 }

Here , +2 & -2 will get cancelled due to their opposite signs

\tt{ p(1) = 1 + a - 3 + a }

\tt{ p(1) = -2 + 2a }

\Rightarrow{\tt{ -2 + 2a = 0 }}

\rightarrow{\tt{ 2a = 2 }}

\rightarrow{\tt{ a = \dfrac{2}{2}}}

\orange{\implies{\tt{ a = 1}}}

Now,

Consider equation - 1

\tt{ b = + a - 2}

Here substitute the value of a in it

\tt{ b = 1 - 2}

\orange{\implies{\tt{ b = - 1}}}

\rule{400}{4}

Therefore ,

\boxed{\blue{\tt{ Value \; of \; a \; = \; 1}}}

\boxed{\green{\tt{Value \; of \; b \; = \; - 1 }}}

\rule{400}{4}

Step-by-step explanation:

Similar questions