Math, asked by palaksharma5990, 10 months ago

Find the value of a cube + b cube + c cube if a+b+c=5 and a square+b square + c square=29

Answers

Answered by rajeevr06
0

Answer:

Given

a + b + c = 5

 {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 29

so,

 {(a + b + c)}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(ab + bc + ca)

 {5}^{2}  = 29 + 2(ab + bc + ca)

ab + bc + ca =  \frac{25 - 29}{2}  =  - 2

now,

 {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc = (a + b + c)( {a}^{2}  +  {b}^{2}  +  {c}^{2}  - ab - bc - ca)

{a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc =5 \times (29 - ( - 2)) = 5 \times 31 = 155

Similar questions