Math, asked by babitha34, 11 months ago

Find the value of a, if log(1/243) base 3
=
-a.​

Answers

Answered by Anonymous
5

\huge\mathtt{Hello!}

 log_{3}( \frac{1}{243} )  =  - a

 log_{3}( {243}^{ - 1} )

 =  -  log_{3}( {3}^{5} )

 =  - 5 log_{3}(3)

 =  - 5 \times 1

 - a =  - 5

a = 5

Therefore, value of a is five

@prettynightmare

Answered by harendrachoubay
2

The value of a is 5.

Step-by-step explanation:

We have,

\log_3(\dfrac{1}{243})=-a

To find, the value of a = ?

\log_3(\dfrac{1}{243})=-a

Using the logarithm identity,

\log \dfrac{m}{n} =\log m-\log n

\log_31-\log_3243=-a

⇒ 0 - \log_33^5 = - a [∵ \log 1 = 0]

⇒ - 5\log_33= - a

Using the logarithm identity,

\log a^m=m\log a

⇒ - 5(1) = - a

Using the logarithm identity,

\log_aa = 1

⇒ - 5 = - a

⇒ a = 5

Thus, the value of a is 5.

Similar questions