Math, asked by shambhuprasadpokhara, 4 months ago

find the value of a in equation 3x^2-(3a+2)x+7=0 if one of its root is 4?​

Answers

Answered by mathdude500
0

\begin{gathered}\begin{gathered}\bf \: Given \:  - \begin{cases} &\sf{a \: quadratic \:  {3x}^{2}  - (3a + 2)x + 7 = 0} \\ &\sf{having \: one \: root \: 4} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To \: find \:  - \begin{cases} &\sf{value \: of \: a}  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

Given

  • A quadratic equation

 \rm \: \rightarrow \:  {3x}^{2}  - (3a + 2)x + 7 = 0

Since,

 \bigstar \:  \:  \red{ \rm \: According \:  to \:  statement }

  • 4 is the root of the quadratic equation.

 \rm \: \rightarrow \:  3{(4)}^{2}  - (3a + 2)  \times 4 \: + 7 = 0

 \rm \: \rightarrow \: 48 - 12a - 8 + 7 = 0

 \rm \: \rightarrow \: 47 - 12a = 0

 \rm \: \rightarrow \: 12a = 47

 \large \boxed{ \pink{ \rm \: \rightarrow \: a \:  =  \: \dfrac{47}{12}  \:  \: }}

Similar questions