Math, asked by parmarramesh2410, 2 months ago

The sum of a two digit number and the number obtained by reversing its digit is 143 . Find the number , if its tens place digit is greater than the units place digit by 3​

Answers

Answered by mathdude500
30

\begin{gathered}\begin{gathered}\bf \: Let \:  - \begin{cases} &\sf{digits \: at \: ones \: place \: be \: x} \\ &\sf{digits \: at \: tens \: place \: be \: y} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: So \:  - \begin{cases} &\sf{number \: is \: 10y + x} \\ &\sf{reverse \: number \: is \: 10x + y} \end{cases}\end{gathered}\end{gathered}

 \bullet \:  \red{ \bf \: According \:  to \:  question \: }

  • The sum of a two digit number and the number obtained by reversing its digit is 143.

 \rm :  \implies \:10y + x + 10x + y = 143

 \rm :  \implies \:11x + 11y = 143

 \rm :  \implies \:x + y = 13

 \bigstar \:  \:  \:  \boxed{ \pink{ \:  \rm :  \implies \:x \:  =  \: 13 \:  -  \: y}} -  - (i)

Again,

 \bullet \:  \red{ \bf \: According \:  to \:  question \: }

  • Tens place digit is greater than the units place digit by 3.

 \rm :  \implies \:y \:  =  \: x \:  +  \: 3

On substituting the value of x, from equation (i), we get

 \rm :  \implies \:y = 13 - y + 3

 \rm :  \implies \:2y = 16

 \bigstar \:  \:  \:  \boxed{ \pink{ \:  \rm :  \implies \:y \:  =  \: 8}}

Put value of y in equation (i), we get

 \bigstar \:  \:  \:  \boxed{ \pink{ \:  \rm :  \implies \:x \:  =  \: 5}}

Hence,

  • Two digit number is

 \rm \: \rightarrow \: 10y + x = 10 \times 8 + 5 = 85

Similar questions