Math, asked by rasen01, 11 months ago

Find the value of a in the following: 6 /
3√2 -2√3 = 3√2-a√3​

Answers

Answered by AbhijithPrakash
15

Answer:

\dfrac{6}{3\sqrt{2}-2\sqrt{3}}=3\sqrt{2}-a\sqrt{3}\quad :\quad a=-2

Step-by-step explanation:

\dfrac{6}{3\sqrt{2}-2\sqrt{3}}=3\sqrt{2}-a\sqrt{3}

\mathrm{Switch\:sides}

3\sqrt{2}-a\sqrt{3}=\dfrac{6}{3\sqrt{2}-2\sqrt{3}}

\mathrm{Simplify\:}\dfrac{6}{3\sqrt{2}-2\sqrt{3}}

\dfrac{6}{3\sqrt{2}-2\sqrt{3}}

\mathrm{Factor}\:3\sqrt{2}-2\sqrt{3}

3\sqrt{2}-2\sqrt{3}

3=\sqrt{3}\sqrt{3}

=\sqrt{3}\sqrt{3}\sqrt{2}-2\sqrt{3}

\mathrm{Factor\:out\:common\:term\:}\sqrt{3}

=\sqrt{3}\left(\sqrt{3}\sqrt{2}-2\right)

\mathrm{Refine}

=\sqrt{3}\left(\sqrt{6}-2\right)

=\dfrac{6}{\sqrt{3}\left(\sqrt{6}-2\right)}

\mathrm{Factor}\:6:\quad 2\cdot \:3

=\dfrac{2\cdot \:3}{\sqrt{3}\left(\sqrt{6}-2\right)}

\mathrm{Cancel\:}\dfrac{2\cdot \:3}{\sqrt{3}\left(\sqrt{6}-2\right)}:\quad \dfrac{2\sqrt{3}}{\sqrt{6}-2}

=\dfrac{2\sqrt{3}}{\sqrt{6}-2}

3\sqrt{2}-a\sqrt{3}=\dfrac{2\sqrt{3}}{\sqrt{6}-2}

\mathrm{Subtract\:}3\sqrt{2}\mathrm{\:from\:both\:sides}

3\sqrt{2}-a\sqrt{3}-3\sqrt{2}=\dfrac{2\sqrt{3}}{\sqrt{6}-2}-3\sqrt{2}

\mathrm{Simplify}

3\sqrt{2}-a\sqrt{3}-3\sqrt{2}=\dfrac{2\sqrt{3}}{\sqrt{6}-2}-3\sqrt{2}

\mathrm{Simplify\:}3\sqrt{2}-a\sqrt{3}-3\sqrt{2}:\quad -a\sqrt{3}

\mathrm{Simplify\:}\dfrac{2\sqrt{3}}{\sqrt{6}-2}-3\sqrt{2}:\quad 3\sqrt{2}+2\sqrt{3}-3\sqrt{2}

-a\sqrt{3}=3\sqrt{2}+2\sqrt{3}-3\sqrt{2}

\mathrm{Divide\:both\:sides\:by\:}-\sqrt{3}

\dfrac{-a\sqrt{3}}{-\sqrt{3}}=\dfrac{3\sqrt{2}}{-\sqrt{3}}+\dfrac{2\sqrt{3}}{-\sqrt{3}}-\dfrac{3\sqrt{2}}{-\sqrt{3}}

\mathrm{Simplify}

\mathrm{Simplify\:}\dfrac{-a\sqrt{3}}{-\sqrt{3}}:\quad a

\mathrm{Simplify\:}\dfrac{3\sqrt{2}}{-\sqrt{3}}+\dfrac{2\sqrt{3}}{-\sqrt{3}}-\dfrac{3\sqrt{2}}{-\sqrt{3}}

\mathrm{Group\:like\:terms}

=\dfrac{3\sqrt{2}}{-\sqrt{3}}-\dfrac{3\sqrt{2}}{-\sqrt{3}}+\dfrac{2\sqrt{3}}{-\sqrt{3}}

\mathrm{Apply\:rule}\:\dfrac{a}{c}\pm \dfrac{b}{c}=\dfrac{a\pm \:b}{c}

=\dfrac{3\sqrt{2}-3\sqrt{2}+2\sqrt{3}}{-\sqrt{3}}

\mathrm{Add\:similar\:elements:}\:3\sqrt{2}-3\sqrt{2}=0

=\dfrac{2\sqrt{3}}{-\sqrt{3}}

\mathrm{Apply\:the\:fraction\:rule}:\quad \dfrac{a}{-b}=-\dfrac{a}{b}

=-\dfrac{2\sqrt{3}}{\sqrt{3}}

\mathrm{Cancel\:the\:common\:factor:}\:\sqrt{3}

=-2

a=-2

Attachments:

rasen01: i cannot understand
AbhijithPrakash: Which part??
rasen01: from where you have writen Facto
rasen01: Factor
AbhijithPrakash: Factor means Factorize
rasen01: ok
rasen01: thanhs
Similar questions