Math, asked by virajbhola3113, 7 months ago

find the value of 'a' linear equation has no solution x+ay=2 and 2x-5y=3​

Answers

Answered by Mihir1001
93

\huge{\underline{\bf\red{Questi {\mathbb{O}} n} :}}

\sf Fine \: the \: value \: of \: 'a' \: for \: which \\  \sf the \: system \: of \: linear \: equations \\ x + ay = 2 \: { \sf{and}} \: 2x - 5y = 3 \\ \sf has \: no \: solution.

\huge{\underline{\: \bf\green{Answ {\mathbb{E}} r}\ \: :}}

  • CASE ( i ) :-

 \boxed{\qquad \qquad a =  -  \frac{5}{2} \qquad \qquad }

  • CASE ( ii ) :-

 \boxed{a =  \bigg\{ x :x \in {\mathbb{R}},x \neq -  \frac{10}{3} \bigg\}}

\huge{\underline{\bf\blue{Soluti {\mathbb{O}} n}\ :}}

The given system of linear equations is of the form :—

  • a_1 x + b_1 y + c_1 = 0
  • a_2 x + b_2 y + c_2 = 0

where,

  • a_1 = 1, \ b_1 = a, \ c_1 = -2
  • a_2 = 2, \ b_2 = -5, \ c_2 = -3

Now,

 \because the given system of linear equations has no solution.

 \therefore \boxed{ \dfrac{a_1}{a_2} = \dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2} }

CASE ( i ) :

\begin{aligned} \\ \qquad \ \frac{a_{1}}{a_{2}} & = \frac{b_{1}}{b_{2}}  \\  \\ \implies\frac{1}{2} & =  \frac{a}{ - 5} \\  \\  \implies a  & =  -  \frac{5}{2}  & & & & & & & \end{aligned}

CASE ( ii ) :

\begin{aligned} \\ \qquad \ \frac{b_{1}}{b_{2}} & \neq \frac{c_{1}}{c_{2}}  \\  \\ \implies\frac{a}{ - 5} & \neq \frac{ - 2}{ - 3} \\  \\  \implies \quad a  &  \neq \frac{ - 10}{3}  & & & & & & & \end{aligned}

\red{\rule{5.5cm}{0.02cm}}

\purple{\rule{7.5cm}{0.02cm}}

\Large{ \mid {\underline{\underline{\bf\green{BrainLiest \ AnswEr}}}} \mid }

Answered by jitendarm782
2

Answer:

I hope help you.

Step-by-step explanation:

please follow me and please make brilliant me

Attachments:
Similar questions