Math, asked by Kritisundar02, 1 year ago

Find the value of a³+b³÷a³-b³​

Attachments:

Answers

Answered by pansumantarkm
1

Answer:

Required value of \frac{a^{3}+b^{3}}{a^{3}-b^{3}}=\frac{9}{4\sqrt{5}}

Step-by-step explanation:

Given,

a=\frac{\sqrt{5}+1}{\sqrt{5}-1 }   and   b=\frac{\sqrt{5}-1}{\sqrt{5}+1}

Now,

a+b=\frac{\sqrt{5}+1}{\sqrt{5}-1}+\frac{\sqrt{5}-1}{\sqrt{5}+1}\\ =\frac{(\sqrt{5}+1)^{2}+(\sqrt{5}-1)^{2}}{(\sqrt{5}-1)(\sqrt{5}-1)}\\ =\frac{5+2\sqrt{5}+1+5-2\sqrt{5}+1}{5-1}\\ =\frac{12}{4}\\ =3

and,

a-b=\frac{\sqrt{5}+1}{\sqrt{5}-1}-\frac{\sqrt{5}-1}{\sqrt{5}+1}\\ =\frac{(\sqrt{5}+1)^{2}-(\sqrt{5}-1)^{2}}{(\sqrt{5}+1)(\sqrt{5}-1)}\\ =\frac{(5+1+2\sqrt{5})-(5+1-2\sqrt{5})}{5-1}\\ =\frac{6+2\sqrt{5}-6+2\sqrt{5}}{4}\\ =\frac{4\sqrt{5}}{4}\\ =\sqrt{5}

and,

ab=[\frac{\sqrt{5}+1}{\sqrt{5}-1}]*[\frac{\sqrt{5}-1}{\sqrt{5}+1}]\\ =\frac{(\sqrt{5}+1)(\sqrt{5}-1)}{(\sqrt{5}+1)(\sqrt{5}-1)}\\ =\frac{5-1}{5-1}\\ =\frac{4}{4}\\ =1

\frac{a^{3}+b^{3}}{a^{3}-b^{3}}\\ =\frac{(a+b)^{3}-3ab(a+b)}{(a-b)^{3}+3ab(a-b)}

Putting the values of (a+b),ab,(a-b) we get,

\frac{3^{3}-3*3 }{(\sqrt{5})^{3}+3\sqrt{5}}\\ =\frac{27-9}{5\sqrt{5}+3\sqrt{5}}\\ =\frac{18}{8\sqrt{5}}\\ =\frac{9}{4\sqrt{5}}

\frac{a^{3}+b^{3}}{a^{3}-b^{3}}=\frac{9}{4\sqrt{5}}

______________________________

           //Hope it will Helped You//

         //Please Mark it as Brainliest//

Answered by AryanTennyson
1

ARYAN.....PVT....LTD. .

Attachments:
Similar questions