Math, asked by sahilkumarmadra, 3 months ago

Find the value of acute angle ɵ satisfying

√3sin = cos.​

Answers

Answered by mathdude500
4

Answer:

 \sqrt{3} sinɵ = cosɵ \\  \frac{sinɵ}{cosɵ}  =   \frac{1}{ \sqrt{3} }   \\ tanɵ =  \frac{1}{ \sqrt{3} } tanɵ = tan30 \\ ɵ = 30

Answered by Adarsh21052002
2

This is your answer

Answer:

 \sqrt{3}  \sin( \alpha )  =  \cos( \alpha )

 \sqrt{3}  \frac{opposite \: side}{hypotenuse} =   \frac{adjacent}{hypotenuse}

 \sqrt{3} opposite \: side = \frac{adj \: side}{hypotenuse}  \times hypot.

 \sqrt{3}  =  \frac{adj \: side}{opp \: side}

 \sqrt{3}  = cot \alpha

 \cot(30)  =  \cot( \alpha )

 \alpha  = 30

alternately,

√3 sin a= cos a

sin a / cos a= 1/√3

tan a =1/√3

tan 30 = 1/√3

thus a= 30°

Similar questions