find the value of c so that (2,0) (0,1) (4,5) (0,c) are concyclic
Answers
Answered by
11
the value of c so that (2,0) (0,1) (4,5) (0,c) are concyclic is 1 & 27/6
as-
the eqn. of circle passing through the point (2,0)
4+4g+c²=0 ---------------------------(1)
the eqn.of circle passing through the point (0,1)
1+2f+c² =0 -----------------------------(2)
the eqn.of circle passing through the point(4,5)
41+8g+10f+c² =0 ------------------------(3)
from (1)
g= (-c²-4)÷4
from(2)
h=(-c²-1)÷2
putting value of g &c in (3)
c²=27÷6
g= (-51)/24
f=(-33)/12
from eqn.of circle
x²+y²-51/12x-33/6y+27/6=o
after putting x=0 y=c
then c=1 & 27/6
as-
the eqn. of circle passing through the point (2,0)
4+4g+c²=0 ---------------------------(1)
the eqn.of circle passing through the point (0,1)
1+2f+c² =0 -----------------------------(2)
the eqn.of circle passing through the point(4,5)
41+8g+10f+c² =0 ------------------------(3)
from (1)
g= (-c²-4)÷4
from(2)
h=(-c²-1)÷2
putting value of g &c in (3)
c²=27÷6
g= (-51)/24
f=(-33)/12
from eqn.of circle
x²+y²-51/12x-33/6y+27/6=o
after putting x=0 y=c
then c=1 & 27/6
Similar questions