Math, asked by cehende6, 2 months ago

Find the value of c so that (x-2) left parenthesis, x, minus, 2, right parenthesis is a factor of the polynomial p(x), left parenthesis, x, right parenthesis. p(x) = x^3 -4x^2 +3x+c

Answers

Answered by MaheswariS
5

\underline{\textbf{Given:}}

\mathsf{(x-2)\;is\;a\;factor\;of\;P(x) = x^3 -4x^2 +3x+c}

\underline{\textbf{To find:}}

\textsf{The value of c}

\underline{\textbf{Solution:}}

\underline{\textbf{Factor theorem:}}

\boxed{\textbf{(x-a) is a factor of P(x) if and only if P(a)=0}}

\mathsf{P(x)=x^3 -4x^2 +3x+c}

\textsf{Since (x-2) is a factor of P(x), we have P(2)=0}

\implies\mathsf{2^3 -4(2)^2 +3(2)+c=0}

\implies\mathsf{8 -4(4)+3(2)+c=0}

\implies\mathsf{8 -16+6+c=0}

\implies\mathsf{8 -10+c=0}

\implies\mathsf{-2+c=0}

\implies\boxed{\mathsf{c=2}}

\underline{\textbf{Find more:}}

If x-2 is factor of polynomial 5x²+mx, then value of m is​

https://brainly.in/question/48051029

Answered by jaswasri2006
2

x - 2 = 0

x = 2

x³ - 4x² + 3x + c = 0

⇒ (2)³ - 4(2)² + 3(2) + c = 0

⇒ 8 - 16 + 6 + c = 0

c = 2

Similar questions