Math, asked by vishalpange, 1 year ago

Find the value of c such that the equation 4x^2-2(c+1)x+(c+4)=0 has real and equal roots.

Answers

Answered by MonarkSingh
19
\huge\boxed{\texttt{\fcolorbox{Red}{aqua}{Hey Mate!!!}}}

Here
a = 4
b = -2(c +1)
c=( c+4)
If the equation has real and equal roots, than
b {}^{2}  - 4ac = 0 \\ put \: the \: value \:  \: we \: get \\(  - 2( c  +  1) ){}^{2}   - 4 \times 4 \times (c + 4) = 0 \\ 4(c {}^{2}  + 1 + 2c) - 16c - 64 = 0 \\ 4c {}^{2}  + 4 + 8c - 16c - 64 = 0 \\ 4c {}^{2}  - 8c - 60 = 0 \\ 4c {}^{2}  - 20c + 12c - 60 = 0 \\ 4c(c - 5) + 12(c - 5) = 0 \\ (c - 5)(4c + 12) = 0 \\ c - 5 = 0 \:  \: or \:  \:  \: 4c + 12 = 0 \\ c = 5 \:  \:  \: or \:  \:  \: c =  \frac{ - 12}{4}  \\ c = 5 \:  \:  \:  \: or \:   \:  \:  - 3
\large{\red{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\underline{\underline{Hope\:it\:helps\: you}}}}}}}}}}}}}}
Answered by Anonymous
12
Hey mate ^_^

Check this attachment

#Be Brainly❤️
Attachments:
Similar questions