Math, asked by BiseajitShit, 1 year ago

Find the value of cos(-1170°)​

Answers

Answered by AbhijithPrakash
7

Answer:

\cos \left(-1170^{\circ \:}\right)=0

Step-by-step explanation:

\cos \left(-1170^{\circ \:}\right)

\gray{\mathrm{Use\:the\:following\:property:}\:\cos \left(-x\right)=\cos \left(x\right)}

\gray{\cos \left(-1170^{\circ \:}\right)=\cos \left(1170^{\circ \:}\right)}

=\cos \left(1170^{\circ \:}\right)

\black{\cos \left(1170^{\circ \:}\right)}

\gray{\mathrm{Rewrite\:the\:angles\:for}\:\cos \left(1170^{\circ \:}\right):}

\displaystyle\gray{\cos \left(1170^{\circ \:}\right)=\cos \left(\frac{12+1}{2}180^{\circ \:}\right)=\cos \left(\left(\frac{12}{2}+\frac{1}{2}\right)180^{\circ \:}\right)=\cos \left(360^{\circ \:}\cdot \:3+\frac{1}{2}180^{\circ \:}\right)}

\displaystyle=\cos \left(360^{\circ \:}3+\frac{1}{2}180^{\circ \:}\right)

\gray{\mathrm{Use\:the\:periodiciity\:of\:}\cos :\quad \cos \left(x+360^{\circ \:}\cdot \:k\right)=\cos \left(x\right)}

\displaystyle\gray{\cos \left(360^{\circ \:}\cdot \:3+\frac{1}{2}180^{\circ \:}\right)=\cos \left(\frac{1}{2}180^{\circ \:}\right)}

\displaystyle=\cos \left(\frac{1}{2}180^{\circ \:}\right)

\gray{\mathrm{Simplify}}

=\cos \left(90^{\circ \:}\right)

\gray{\mathrm{Use\:the\:following\:trivial\:identity}:\quad \cos \left(90^{\circ \:}\right)=0}

=0

Similar questions