Math, asked by methaaditya25, 2 months ago

find the value of cos^2 90°+sin30°+tan45°​

Answers

Answered by Laxminivasmaroju
0

Answer:

3/2

Step-by-step explanation:

cos90=0

0 square 0

sin30=1/2

tan45=1

0 + 1/2 + 1

3/2

Answered by Flaunt
14

\sf\huge {\underline{\underline{{Solution}}}}

cos90°= 0

sin30°=1/2

tan45°= 1

Now, put the values into Question

=> cos²90°+ sin30°+ tan45°

=> 0 + 1/2+1

=> 1/2+1= 1+2/2

= 3/2

More trigonometric values :

 \Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

Note : Check from web as not visible on this app

More trigonometric identities

  • sin²Θ+cos²Θ=1
  • sec²Θ=1+tan²Θ
  • cosec²Θ=1+cot²Θ

Reciprocal identities

  • Sinθ= 1/cosecθ
  • cosθ=1/secθ
  • tanθ=1/cotθ

Angle formulas

  • sin(90°−θ) = cos θ
  • cos(90°−θ) = sin θ
  • tan(90°−θ) = cot θ
  • cot(90°−θ) = tan θ
  • sec(90°−θ) = cosec θ
  • cosec(90°−θ) = sec θ
Similar questions