Math, asked by mohitkukreja2141, 9 months ago

Find the value of cos(270+-x)
in terms of sin & cos?

Answers

Answered by Mysterioushine
7

ANSWER :

 \cos(270 - x)  =  - sinx

Answered by Anonymous
1

Answer:

 \cos(270  + ( - x))  \\  \cos(270 - x)  \\  \\  \\ using \: formula \:   \\ =  \cos(a - b)  =  \cos(a)  \times  \cos(b)  +  \sin(a)  \times  \sin(b)  \\  \cos(270)  \times  \cos(x)  +  \sin(270)  \times  \sin(x)  \\  \\ convert \: 270 \: into \: radian \: we \: will \: get \:  \frac{3\pi}{2}  \\  \\  \cos( \frac{3\pi}{2} )  \cos(x)  +  \sin( \frac{3\pi}{2} )  \sin(x)  \\  \cos(\pi +  \frac{\pi}{2} ) \cos(x)   +  \sin(\pi +  \frac{\pi}{2} )  \sin(x)  \\  -  \cos( \frac{\pi}{2} )  \cos(x)  -  \sin( \frac{\pi}{2} )  \sin(x)  \\ 0 \times  \cos(x)  - 1 \times  \sin(x)  \\  -  \sin(x)

I hope u will find ur answer plz mark brainliest answer

Similar questions