Math, asked by enjetiharshad7, 6 months ago

Find the value of cos[-7π/3]

Answers

Answered by MissQueen00
0

Answer:

cos(7π3) is just cos(2π+π3) .

Since cos(2π)=cos0 , cos2π=1 .

Go π3 ( 60° ) past that, and

you'll have cos(7π3)=cos(420°)=cos(60°) .

Answered by hukam0685
2

 \bf \: cos \left( -   \frac{ 7\pi}{3} \right)  =  \frac{1}{2}   \\

Given:

  •  \cos \left( \frac{ - 7\pi}{3} \right)  \\

To find:

  • Find the value of trigonometric expression.

Solution:

Concept/formula to be used:

  1. \bf cos( -  \theta) = cos( \theta) \\
  2. \bf cos( 2\pi +  \theta) = cos( \theta) \\

Step 1:

Simplify the expression.

Apply formula 1.

\cos \left( \frac{ - 7\pi}{3} \right) =  \cos \left( \frac{ 7\pi}{3} \right) \\

Step 2:

Simplify the expression.

\cos \left( \frac{ 7\pi}{3} \right) =\cos \left(2\pi +  \frac{ \pi}{3} \right)   \\

\cos \left(2\pi +  \frac{ \pi}{3} \right)    =\cos \left(  \frac{ \pi}{3} \right)   \\

The value of \cos \left(  \frac{ \pi}{3} \right) =  \frac{1}{2}    \\

Thus,

\bf cos \left( -   \frac{ 7\pi}{3} \right)  =  \frac{1}{2}   \\

Learn more:

1) Value of cos[π/6 + cos⁻¹(- 1/2)] is.....,Select Proper option from the given options.

(a) - √3/2

(b) √3-1/2√2

(c) √5-1/4...

https://brainly.in/question/5596485

2) The period of cos x sin (pi/4-x) is

https://brainly.in/question/20322349

#SPJ3

Similar questions