Math, asked by anshudyutirout, 2 months ago


Find the value of
(Cos × Sin^-1 √3/2)^2 + (tan × Cot^-1 1)^2​

Answers

Answered by RISH4BH
73

Answer:

\boxed{\red{\sf  \left\{ cos \bigg( sin^{-1}\bigg(\dfrac{\sqrt3}{2}\bigg)\bigg)\right\}^2+\left\{ tan\bigg( cot^{-1}(1)\bigg)\right\}^2  =\dfrac{5}{4} }}

Step-by-step explanation:

A trignometric expression is given to us and we need to find the value of that , expression . Some basic knowledge required here is , that , say if we have ,

\sf\red{\dashrightarrow} tan\theta = x

And we need to find the value of theta ,then the angle can be written as ,

\sf\red{\dashrightarrow} \theta =tan^{-1}( x)

Or else we know that , the value of tan 45° = 1 . We can write it as ,

\sf\red{\dashrightarrow} \theta = 45 = tan^{-1}(1)

.Now let's simplify out the equation . The given equation is ,

\sf\red{\dashrightarrow} \left\{ cos \bigg( sin^{-1}\bigg(\dfrac{\sqrt3}{2}\bigg)\bigg)\right\}^2+\left\{ tan\bigg( cot^{-1}(1)\bigg)\right\}^2

  • We know that , the value of sin 60° = √3/2 and cot 45° = 1. So that ,

\sf\red{\dashrightarrow} (cos 60^{\circ})^2 +( tan45^{\circ})^2 \\\\ \sf\red{\dashrightarrow}  \bigg(\dfrac{1}{2}\bigg)^2 + 1^2 \\\\ \sf\red{\dashrightarrow}  \dfrac{1}{4} + 1 \\\\ \sf\red{\dashrightarrow}  \dfrac{ 4 + 1 }{4} \\\\ \sf\red{\dashrightarrow}  \boxed{\pink{\sf \dfrac{5}{4}}}

\rule{200}2

Similar questions