Find the value of cos (sin⁻¹ + sin⁻¹).
Answers
Answered by
1
Solution :
i ) Let cos^-1 ( 3/5 ) = A
=> cosA = 3/5 ---( 1 )
ii ) sin² A
= 1 - cos²A
= 1 - ( 3/5 )²
= 1 - 9/25
= ( 25 - 9 )/25
= 16/25
sin A = 4/5 ----( 2 )
iii ) cos^-1 ( 12/13 ) = B
=> cos B = 12/13 ---- ( 3 )
iv ) sin² B
= 1 - cos² B
= 1 - ( 12/13 )²
= 1 - 144/169
= ( 169 - 144 )/169
= 25/169
sin B = 5/13 --- ( 4 )
Now ,
v ) cos { cos^-1(3/5) + sin^-1(5/13) }
= cos( A + B )
= cosAcosB - sinAsinB
= (4/5)(12/13) - (3/5)(5/13)
[ from(1),(2),(3) and (4) ]
= 48/65 - 15/65
= ( 48 - 15 )/65
= 33/65
••••
i ) Let cos^-1 ( 3/5 ) = A
=> cosA = 3/5 ---( 1 )
ii ) sin² A
= 1 - cos²A
= 1 - ( 3/5 )²
= 1 - 9/25
= ( 25 - 9 )/25
= 16/25
sin A = 4/5 ----( 2 )
iii ) cos^-1 ( 12/13 ) = B
=> cos B = 12/13 ---- ( 3 )
iv ) sin² B
= 1 - cos² B
= 1 - ( 12/13 )²
= 1 - 144/169
= ( 169 - 144 )/169
= 25/169
sin B = 5/13 --- ( 4 )
Now ,
v ) cos { cos^-1(3/5) + sin^-1(5/13) }
= cos( A + B )
= cosAcosB - sinAsinB
= (4/5)(12/13) - (3/5)(5/13)
[ from(1),(2),(3) and (4) ]
= 48/65 - 15/65
= ( 48 - 15 )/65
= 33/65
••••
Answered by
0
Answer:
33/65
Step-by-step explanation:
Formula used:
cos(A+B) = cosA cosB - sinA sinB
cos (sin⁻¹(3/5))+ sin⁻¹(5/13)).
sin⁻¹(3/5) = A implies sinA = 3/5
sin⁻¹(5/13) =B implies sinB = 5/13
sinA = 3/5, cos²A = 1 - sin²A= 16/25
cosA = 4/5
sinB = 5/13, cos²B = 1 - sin²B= 144/169
cosB = 12/13
Now,
cos (sin⁻¹(3/5))+ sin⁻¹(5/13))
= cos(A+B)
= cosA cosB - sinA sinB
= (4/5)(12/13) - (3/5)(5/13)
= (48/65) - (15/65)
= 33/65
I hope this answer helps you
Similar questions