Find the value of tan (sin⁻¹ + cos⁻¹).
Answers
Answered by
1
Solution :
i ) Let sin^-1(3/5) = A
=> sinA = 3/5 ---( 1 )
ii ) cos²A
= 1 - sin²A
= 1 - ( 3/5 )²
= 1 - 9/25
= ( 25 - 9 )/25
= 16/25
cosA = 4/5 ---( 2 )
iii ) tanA = 3/4 --- ( 3 )
iv ) cos^-1(5/√34) = B
=> cosB = 5/√34 ----( 4 )
v ) sin² B
= 1 - cos²B
= 1 - ( 5/√34 )²
= 1 - 25/34
= ( 34 - 25 )/34
= 9/34
sinB = 3/√34 ---( 5 )
vi ) tanB = 3/5 --- ( 6 )
Now ,
tan{ sin^-1(3/5) + sin^-1(5/13) }
= tan( A + B )
= [ tanA + tanB ]/( 1 - tanAtanB )
= [ 3/4 + 3/5]/[ 1 - (3/4)(3/5) ]
= [ (15+12)/20 ]/[ (20-9)/20]
= (27/20)/(11/20)
= 27/11
••••
i ) Let sin^-1(3/5) = A
=> sinA = 3/5 ---( 1 )
ii ) cos²A
= 1 - sin²A
= 1 - ( 3/5 )²
= 1 - 9/25
= ( 25 - 9 )/25
= 16/25
cosA = 4/5 ---( 2 )
iii ) tanA = 3/4 --- ( 3 )
iv ) cos^-1(5/√34) = B
=> cosB = 5/√34 ----( 4 )
v ) sin² B
= 1 - cos²B
= 1 - ( 5/√34 )²
= 1 - 25/34
= ( 34 - 25 )/34
= 9/34
sinB = 3/√34 ---( 5 )
vi ) tanB = 3/5 --- ( 6 )
Now ,
tan{ sin^-1(3/5) + sin^-1(5/13) }
= tan( A + B )
= [ tanA + tanB ]/( 1 - tanAtanB )
= [ 3/4 + 3/5]/[ 1 - (3/4)(3/5) ]
= [ (15+12)/20 ]/[ (20-9)/20]
= (27/20)/(11/20)
= 27/11
••••
Answered by
0
HELLO DEAR,
GIVEN:- tan (sin⁻¹ + cos⁻¹).
let sin-¹ 3/5 = A
=> sinA = 3/5
cosA = √{1 - 9/25}
=> cosA = 4/5
tanA = sinA/cosA = 3/4
=> A = tan-¹3/4
similarly, cos-¹ 5/√34 = B
=> cosB = 5/√34
so, sinB = √{1 - 25/34}
=> sinB = 3/√34
tanB = sinB/cosB = 3/5
B = tan-¹3/5
now, tan (sin⁻¹ + cos⁻¹). = tan(A + B)
=> tan(tan-¹3/4 + tan-¹ 3/5)
=> tan{tan-¹ (3/4 + 3/5)/(1 - 9/20)}
=> tan{tan-¹ (27/11)}
=> 27/11
I HOPE IT'S HELP YOU DEAR,
THANKS
GIVEN:- tan (sin⁻¹ + cos⁻¹).
let sin-¹ 3/5 = A
=> sinA = 3/5
cosA = √{1 - 9/25}
=> cosA = 4/5
tanA = sinA/cosA = 3/4
=> A = tan-¹3/4
similarly, cos-¹ 5/√34 = B
=> cosB = 5/√34
so, sinB = √{1 - 25/34}
=> sinB = 3/√34
tanB = sinB/cosB = 3/5
B = tan-¹3/5
now, tan (sin⁻¹ + cos⁻¹). = tan(A + B)
=> tan(tan-¹3/4 + tan-¹ 3/5)
=> tan{tan-¹ (3/4 + 3/5)/(1 - 9/20)}
=> tan{tan-¹ (27/11)}
=> 27/11
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions