Math, asked by sudharsan5, 1 year ago

find the value of cos theta cos 90 minus theta minus sin theta sin 90 minus theta

Answers

Answered by Shanayarokz
91
Cos∅ cos ( 90 - ∅ ) - sin∅ sin ( 90 - ∅ )

=> Sin∅ = cos ( 90 - ∅ )

=> Cos∅ = sin ( 90 - ∅ )


Cos∅ Sin∅ - Sin∅ Cos∅

= 0
Answered by mysticd
13

Answer:

Value of cos\theta cos(90-\theta)-sin\theta sin(90-\theta) = 0

Explanation:

Method 1 :

We know that,

\boxed {cosAcosB-sinAsinB\\=cos(A+B)}

Here,

Given cos\theta cos(90-\theta)-sin\theta sin(90-\theta)

=cos(\theta+90-\theta)

=cos90

= 0 \* cos 90° = 0 *\

Therefore,

Value of cos\theta cos(90-\theta)-sin\theta sin(90-\theta) = 0

Method 2:

i)cos(90-\theta) = sin\theta ---(1)

ii) sin(90-\theta)=cos\theta----(2)

Now ,

cos\theta cos(90-\theta)-sin\theta sin(90-\theta)

= cos\theta sin\theta-sin\theta cos\theta

/* from(1) and (2) */

= 0

••••

Similar questions