Math, asked by hussandeepsingh3382, 11 months ago

Find the value of cosec-1125

Answers

Answered by shivani845455
28

Answer:

hey mate yr ans is√2

Step-by-step explanation:

hope u understand

mark as brainliest plz

Attachments:
Answered by parulsehgal06
0

Answer:

The value of cosec(1125) = \sqrt{2}

Step-by-step explanation:

Trigonometric values:

  • By the right-angled triangle we have 6 different trigonometric ratios.

             Sinθ, Cosθ, Tanθ, Cosecθ, Secθ, Cotθ

  • The trigonometric ratios have values for different angles

     Sin0° = 0, Sin30° = 1/2, Sin45° = 1/\sqrt{2}, Sin60° = \sqrt{3}/2, Sin90° = 1

     Cos0° = 1, Cos30° = \sqrt{3}/2, Cos45° = 1/\sqrt{2}, Cos60° = 1}/2, Cos90° = 0

     Tan0° = 0, Tan30° = 1/\sqrt{3}, Tan45° = 1/1, Tan60° = \sqrt{3}/2, Tan90° = 1

     and we know

  •    Sinθ = 1/Cosecθ, Cosθ=1/Secθ, Tanθ=1/Cotθ

        The remaining values can be known by the above values and relation.

       Also cosec(360+θ)° = cosecθ

   Now we will find the value of Cosec(1125)°

   Cosec(1125)° =  cosec(360+(720+45))°

                         =  cosec(720+45)°

                         = cosec(360+(360+45))°

                         = cosec(360+45)°

                         = cosec45°

                         = 1/sin45°

   Cosec(1125)° = \sqrt{2}

Hence the value of  Cosec(1125)° = \sqrt{2}

Know more about Trigonometry:

https://brainly.in/question/5488061?referrer=searchResults

 

Similar questions