Math, asked by graja1213, 3 months ago

find the value of discriminate for the quadratic equation x2+2x_9=0​

Answers

Answered by amansharma264
20

EXPLANATION.

Discriminant of the quadratic equation.

⇒ x² + 2x - 9 = 0.

As we know that,

D = Discriminant

⇒ D = b² - 4ac.

⇒ D = (2)² - 4(1)(-9).

⇒ D = 4 + 36.

⇒ D = 40.

                                                                                                                     

MORE INFORMATION.

Nature of the factor of the quadratic expression.

(1) = Real and different, if b² - 4ac > 0.

(2) = Real and different, if b² - 4ac is a perfect square.

(3) = Real and equal, if b² - 4ac = 0.

(4) = If D < 0 Roots are imaginary and unequal or complex conjugate.

Answered by mathdude500
6

\begin{gathered}\begin{gathered}\bf \:Given - \begin{cases} &amp;\sf{a \: quadratic \: equation} \\ &amp;\sf{ {x}^{2} + 2x - 9 = 0 } \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To\:find - \begin{cases} &amp;\sf{nature \: of \: roots}  \end{cases}\end{gathered}\end{gathered}

Concept Used :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac

\large\underline{\bold{Solution :-  }}

The given

  • Quadratic equation is x² + 2x - 9 = 0

On comparing, with ax² + bx + c = 0, we get

  • a = 1

  • b = 2

  • c = - 9

Now,

  • Discriminant, D is given by

\rm :\longmapsto\:D =  {b}^{2}  - 4ac

\rm :\longmapsto\:D =  {2}^{2}  - 4 \times 1 \times ( - 9)

\rm :\longmapsto\:D = 4 + 36

\rm :\longmapsto\:D = 40

\rm :\implies\: \boxed{ \bf \: D &gt; 0}

So,

  • Equation x² + 2x - 9 = 0 has real and unequal roots.

Similar questions