Math, asked by gopallandge3, 11 months ago

find the value of dy/dx if y = log (
3x ^{2}  + 2x + 1

Answers

Answered by amitansuparida202
0

Answer:

it's very easy and I hope it helps u

Attachments:
Answered by kaushik05
38

  \boxed{\huge\red{   \boxed{\mathfrak{solution}}}}

To find dy/dx of :

y =  log(3 {x}^{2}  + 2x + 1)  \\  \\  \rightarrow \:  \frac{dy}{dx}  =  \frac{d}{dx} ( log(3 {x}^{2} + 2x + 1 )) \times  \frac{d}{dx}  (3 {x}^{2}  + 2x + 1) \\  \\  \rightarrow \:  \frac{dy}{dx}  =  \frac{1}{3 {x}^{2} + 2x + 1 }  \times (6x + 2) \\  \\  \rightarrow \:  \frac{dy}{dx}  =  \frac{6x + 2}{3 {x}^{2}  + 2x + 1}

Formula used :

 \boxed{\bold{ \purple{ \frac{d}{dx}  log(x)  =  \frac{1}{x}} }}

  \boxed{ \bold{ \blue{\frac{d}{dx}  {x}^{y}  = y {x}^{y - 1} }}}

Similar questions