Math, asked by saloniulimb986, 5 hours ago

find the value of i^{42}+i^{47}+i^{56}+i^{29}​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\: {i}^{42} +  {i}^{47} +  {i}^{56} +  {i}^{29}

Consider,

\rm :\longmapsto\: {i}^{42}

\rm \:  =  \:  {i}^{2 \times 21}

\rm \:  =  \:  {( {i}^{2}) }^{21}

\rm \:  =  \:  {( - 1)}^{21}

\rm \:  =  \:  - 1

\rm\implies \:\boxed{\tt{  {i}^{42}  =  - 1}}

Consider,

\rm :\longmapsto\: {i}^{47}

\rm :\longmapsto\: {i}^{46}  \times i

\rm \:  =  \:  {i}^{2 \times 23}  \times i

\rm \:  =  \:  {( {i}^{2} )}^{23}  \times i

\rm \:  =  \:  {( - 1)}^{23}  \times i

\rm \:  =  \:  - i

\rm\implies \:\boxed{\tt{  {i}^{47}  =  - i}}

Now, Consider

\rm :\longmapsto\: {i}^{56}

\rm \:  =  \:  {i}^{2 \times 28}

\rm \:  =  \:  {( {i}^{2} )}^{28}

\rm \:  =  \:  {( - 1)}^{28}

\rm \:  =  \: 1

\rm\implies \:\boxed{\tt{  {i}^{56}  = 1}}

Now, Consider

\rm :\longmapsto\: {i}^{29}

\rm :\longmapsto\: {i}^{28}  \times i

\rm \:  =  \:  {( {i}^{2} )}^{28}  \times i

\rm \:  =  \:  {( - 1)}^{28} \times i

\rm \:  =  \: 1 \times i

\rm \:  =  \: i

\rm\implies \:\boxed{\tt{  {i}^{29}  = i}}

Now, Consider

\rm :\longmapsto\: {i}^{42} +  {i}^{47} +  {i}^{56} +  {i}^{29}

\rm \:  =  \:  - 1 - i + 1 + i

\rm \:  =  \: 0

Hence,

\rm :\longmapsto\: {i}^{42} +  {i}^{47} +  {i}^{56} +  {i}^{29}  = 0

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\rm :\longmapsto\:i =  \sqrt{ - 1}

\rm :\longmapsto\: {i}^{2} =  - 1

\rm :\longmapsto\: {i}^{3} =  - i

\rm :\longmapsto\: {i}^{4} = 1

Similar questions